90 состояния влажности почвы. Измерение влажности почвы

💖 Нравится? Поделись с друзьями ссылкой

Влажность земли является важнейшим агротехническим параметром в почвоведении, геологии, экологии, садоводстве, который оказывает серьезное воздействие на качественное функционирование экологической системы – биогеоценоза. На сегодняшний день существует множество способов его измерения. В статье расскажем про определение влажности почвы, сравним эффективность различных приборов для ее измерения.

Причины необходимости увлажненности земли

В период вегетации уровень воды в тканях и клетках растительных организмов составляет 70-90 %.

Влажность – это один из главных факторов, влияющих на плодородность грунта. Она реализует такие задачи:

  • обогащение овощных и плодовых культур водой;
  • увлажненность грунта влияет на количество воздуха, уровень соли, а также наличие вредных компонентов;
  • обеспечивает пластичную и плотную структуру земли;
  • влияет на температуру, а также теплоемкость;
  • не допускает выветривания грунтов;
  • показывает способность почвы к агротехническим и сельскохозяйственным процессам.

Для полноценной жизнедеятельности растительного организма его клеткам, а также тканям следует в достаточном объеме получать воду, в частности во время активации жизненные процессов.

Оптимальные уровни увлажненности грунта


На данный момент в экспериментальной разработке находятся два вида полива – струйный и импульсный.

Совет #1. Следует учесть, что уровень оптимальной влажности во время всходов должен быть выше, нежели в процессе дозревания сельскохозяйственных культур.

Как определить увлажненность земли

На сегодняшний день существуют такие методы исчисления влажности грунта:

  • термостатно-весовой;
  • радиоактивный – представляет собой измерение излучения радиоактивных веществ, находящихся в земле;
  • электрический – в данном случае производится определение почвенного сопротивления, проводимости, индуктивности, а также емкости;
  • тензометрический – метод основывается на разнице напряжения воды между границами фаз;
  • оптический – этот способ характеризуется отражаемостью световых потоков;
  • экспресс-методы, в частности органолептический.

Самыми легкими и распространенными считаются термостатно-весовой, а также органолептический методы. Первый является наиболее точным, а второй, в свою очередь, требует мало времени и не нуждается в специальном оборудовании. Приспособления для определения электрического сопротивления указаны в таблице.

Определение электрического сопротивления

В данном случае применяются датчики, которые изготовлены из гипса. В этих датчиках размещено 2 электрода, подключенных непосредственно к счетчику. Электрическое сопротивление материала находится в зависимости от наличия в нем жидкости, что, соответственно, измеряет уровень увлажнения земли. В грунте проделывают отверстия до нужной глубины с последующим размещением в них датчиков. Важным является близкий контакт между чувствительным элементом, а также землей (это необходимый фактор для всех влагомеров).

Современные виды датчиков применяют грануловидный материал, окружающий специальную мембрану и перфорированные крышки, которые произведены из стали либо ПВХ. Таким образом достигается более долгий период эксплуатации датчиков, быстрейший отклик, а также точнейшие измерения. Эти датчики допустимо применять в системах полива, которые контролируются автоматически. Приборы для определения влаги, оборудованные диэлектрическими зондами, указаны в таблице.


Измерения с применением диэлектрических зондов TDR и EDR

Определение показателей увлажненности земли при помощи этого способа осуществляется посредством исчисления диэлектрической среды, зависящей от увлажненности грунта. Проверка наличия влаги в земле провоцирует смену ее диэлектрической постоянной, а это дает возможность вымерять соотношение между данными параметрами. Достоинством этого вида датчика является способность передавать измерения без участия проводов.

На сегодняшний день представлены также приспособления, зонды которых постоянно находятся в трубе на необходимой глубине. Показания в этом случае снимаются автоматически, а потом передаются наблюдателю. Соответственно, и цена данных приборов на порядок выше. Приборы для измерения при помощи почвенных тензиометров указаны в таблице.

Название Описание
Комплект тензиометров Thetaprobe Многофункциональное приспособление, применяемое для разнообразных исследований с тензиометрами разных видов на глубине до 90 сантиметров
Тензиометр DCAT 11 компании DataPhysics Instruments GmbH Измеряет поверхностное, а также межфазное натяжение жидкостей
Тензиометры BPA – 2S Дает возможность определять динамическое поверхностное натяжение

Метод тензиометра для измерения влажности

Тензиометр состоит из керамического фильтра, пластиковой трубы и вакуумного манометра, непосредственно после заполнения водой который опускают в землю для исчисления давления. Жидкость передвигается по керамическому элементу, что вызывает смену давления в трубе, а также изменения показаний счетчика. После процедуры гидратации либо осадков в земле вода не попадает в трубку, до момента смещения потенциалов между грунтом и тензиометром. Приспособления представляют собой трубки, доступные для приобретения, разной длины для исчисления показателей влаги в земле на разнообразных глубинах.

Приборы применяются, как правило, для определения начала, а также конца полива. Их предпочтительнее размещать на разные глубины, к примеру 20 или 40 сантиметров. Исходя из результатов исследования прибора, возможно измерить период начала полива (основываясь на данных устройства, размещенного близко к поверхности), а также время конца орошения (согласно показаниям приспособления, находящегося глубже).

Как повысить увлажненность грунта

Для увеличения влажности, например в теплице, следует производить опрыскивание культур, дорожек, тепловых приборов, а также стеклянного потолка и увеличить количество орошений. Помимо шлангового полива, на сегодняшний день в хозяйствах используется: дождевание, подпочвенное орошение и капельный полив. Наиболее популярный вид – это дождевание, в данном случае одновременно поливаются растения, понижается температура листвы, а также испарения, ликвидируется перегрев культур.

Совет #2. Для уменьшения уровня увлажненности земли в тепличной конструкции следует осуществить вентиляцию, поднять температурные показатели воздуха, урезать количество и объем поливов .

Влияет ли регион на увлажненность грунта


Нормы орошений исчисляются в литрах на метр квадратный либо в кубометрах на один га.

Для Подмосковья характерны подзолистые, дерново-подзолистые почвы, серые лесные, черноземы. Для территории Урала – глинистые, песчаные и подзолистые. В Сибири распространены подзолистые почвы. В Поволжье – черноземы и подзолистые, а в Ленинградской области зачастую встречаются подзолистые грунты.

Как рассчитать оптимальный период и размер полива

Множество проведенных исследований указывают на то, что самыми оптимальными показателями потребности растительного организма в воде можно назвать физиологическое состояние данного растения, сосущая сила листвы, концентрация и осмотическое давление клеточного сока и пр.:

  • зачастую практикуется для определения поливных сроков визуальный способ, то есть по внешним признакам;
  • следующий ориентировочный метод – это измерение увлажненности грунта на ощупь;
  • примерные нормы орошения возможно определить при помощи суммарной радиации. Последняя в данном случае измеряется в периодах между процедурами полива.

Схема полива для разной влажности грунта


В знойную и солнечную погоду рекомендуется осуществлять частые, а также обильные орошения, в прохладное время и в зимний сезон поливы уменьшаются.

Влажность земли относится к главным факторам плодородия. Рассмотрим главные требования к орошению грунта на различных этапах культивации овощных, а также плодовых культур:

  • умеренный полив – нельзя допускать переувлажнения, а также полного высыхания грунта;
  • опрыскивание листы во время цветения – обильный полив осуществляется в летнее время, после окончания цветения в период покоя растения проводится редко;
  • опрыскивание в теплые сезоны – земле летом требуется обильный полив, уменьшаемый в холодное время.

Ответы на распространенные вопросы

Вопрос №1. Как определить, достаточно ли в земле влаги?

Нужно взять в руку немного земли и сжать ее, если влага между пальцев не проступила, раскройте ладонь. Комок почвы не распался – это означает, что уровень влажности удовлетворительный.


Норма применяемого полива находится в зависимости от сезона, растения, возраста культуры, степени освещения, а также водно-физических особенностей грунта.

Вопрос №2. Как можно повысить влажность почвы в тепличной конструкции?

В данном случае необходимо увеличить полив, немного понизить температуру, а также осуществлять опрыскивание растений, почвы и дорожек водой.

Вопрос №3. В какой период роста растений им необходимо наибольшее количество влаги?

Во время вегетации растительные организмы больше всего нуждаются в интенсивном поливе.

Вопрос №4. Какой метод измерения влажности грунта является оптимальным?

Наиболее простыми и популярными являются термостатно-весовой, а также органолептический методы.

Ошибки садоводов, приводящие к заболачиванию почвы

  • Основная оплошность заключается в неотрегулированном орошении земель.
  • Еще следует отметить отсутствие известкования и корректной подкормки почв, подверженных заболачиванию.
  • Также садоводы зачастую забывают об организации дренажной системы. Все это в целом негативно сказывается на качестве грунта.

Как таковые понятия нехватки влаги либо переувлажнения довольно относительны. Повышенная влажность грунта в сочетании с масштабными минеральными подкормками, а также благоприятными показателями температуры активирует интенсивный фотосинтез, стремительный рост культур и увеличение общей биомассы. Соответственно, при уменьшении температуры аналогичное увеличенное увлажнение влияет уже негативно. Как видим, такой параметр, как влажность почвы очень важен в процессе выращивания любой культуры на различных типах грунтов и в различных климатических широтах.

Необходимо помнить, что своевременное и правильное определение влажности почвы позволяет сократить расход водных ресурсов и связанные с ним косвенные расходы на нерациональное использование удобрений, потерю урожая и ухудшение качества продукции. Расчетные методы и рекомендации по оптимальному уровню увлажнения позволяют определять точное количество воды для растений, что препятствует вымыванию удобрений, стимуляторов и гербицидов в нижние слои почвы, а также исключает дефицит воды для растений, позволяя получать высокий урожай экологически безопасной продукции.

Термостатно-весовой метод является основным и наиболее точным методом определения влажности почвы. Также этот метод прост и, несмотря на определенные затраты времени, позволяет обойтись без дорогостоящих приборов.

Для определения влажности требуются следующие инструменты и принадлежности:
1. Бур для забора проб длинной 60-100 см (в зависимости от глубины корнеобитаемого слоя почвы), на котором через каждые 10 см нанесены метки. На фото показан наконечник.
2. Термостойкие стаканчики (бюксы), обычно алюминиевые, которые предварительно взвешивают и наносят пустой вес на крышку. Удобно подобрать коробку, куда плотно выставляются стаканчики для транспортировки в поле.
3. Весы с ценой деления 0,1 г (или 0,01 г) и максимальным измеряемым весом не менее 200 г
4. Сушильный шкаф-термостат с температурой сушки 105°С

Процесс взятия проб выглядит следующим образом:

Собирается нужное количество стаканчиков, пластина, нож и почвенный бур.
После прибытия на место взятия проб почвы, выбирается место где имеется характерная густота посевов (посадок) растений. Для точности эксперимента необходимо выбрать место забора рядом с корневой системой растения (в рядке, если растения растут на гребне — на самом гребне). После выбора места его слегка притаптывают (но не утрамбовывают), это необходимо для того чтобы сухой верхний слой в процессе не осыпался внутрь лунки.
Затем рядом ставят пластину и на нее стаканчик для почвы. Можно обойтись без пластины если почва сухая, и ко дну стаканчик ничего не прилипает.

Далее буром прокалывают почву до первой метки, слегка поворачивают бур и вынимают. Ножом аккуратно высыпают грунт в стаканчик и сразу плотно его закрывают, во избежание испарения влаги, и ставят в коробку.
Вторую пробу берут до следующей отметки. После того как бур вынули, начиная со второй отметки, необходимо срезать почву выше отметки 10 см, т.к. эта почва которая осыпалась или срезалась наконечником в процессе погружения бура в почву.
Должно получиться так:

Необходимо отметить, что наконечник нужно тщательно очищать от почвы перед каждым погружением.
Если почва в нижних слоях влажная, которая не осыпается (либо забор производится на тяжелых и средних почвах), то для ускорения можно вычищать требуемый слой, а затем выкидывать остатки.


Примечание.
Для точности эксперимента необходимо сделать забор проб на одной точке в трех повторностях.

После заполнения всех стаканчиков их аккуратно (чтобы они не перемешались) транспортируют в лабораторию где производят взвешивание и занесение данных в журнал.

Для автоматизации и ускорения расчетов мы используем MS Excel. Заполняем столбцы № бюкса, вес пустого стаканчика, вес стаканчика с сырой почвой. открываем стаканчик и ставим на поднос.

Далее образцы помещаются в сушильный шкаф, в котором выставлена температура 105 градусов С, и сушим не менее 6 часов.
После сушки вынимаем поднос и незамедлительно закрываем стаканчики, чтобы влага из воздуха не адсорбировалась в почву. Затем стаканчики остужаем 10-15 минут и взвешиваем, заполняя в таблице столбик вес стаканчика с сухой почвой.

Расчет в таблице ведется таким образом:
Столбец «Масса сухой почвы (на рисунке обозначен O)» = «масса бюкса с сухой почвой (N)» — «масса бюкса (L)»
Столбец «масса испарившейся воды (P)» = «масса бюкса с сырой почвой (M)» — «масса бюкса с сухой почвой (N)»
Столбец «процент влажности (R) = «масса воды (P)» / «масса сухой почвы (O)» * 100%

Чтобы узнать количество влаги в почве в % от наименьшей влагоемкости, нужно знать количество воды которое слой почвы способен удерживать в порах без сброса в нижние слои. Это определяется опытным путем с помощью заливных площадок на которых измеряют влажность в течение 3-5 дней (в зависимости от типа почвы), когда значение относительной влажности установится на более-менее постоянном уровне — это и следует считать значением 100% НВ (наименьшая влагоемкость или ППВ — предельно-полевая влагоемкость).

Текущее значение влажности слоя почвы в %НВ = «отн. влажность (R)» / «значение отн. влажности при 100% НВ» * 100%

Чтобы определить влажность почвы корнеобитаемого слоя необходимо взять среднее значение всех слоев до нужной глубины.
Для ускорения расчетов нормы полива можно составить таблицу запасов влаги (обычно в т/га или куб.м/га) в разных слоях почвы и при разных значениях %НВ. После этого можно быстро рассчитать необходимое количество поливной воды для фактического значения НВ и планируемого значения НВ, разница и есть норма полива. При разных способах полива норму необходимо немного увеличить, учитывая потери на испарение, сток и т.п. Более подробно о нормах, технике и способах полива можно узнать из наших .

Удачи в работе и высоких урожаев!

А.М. Меньших, к.с-х.н.

Влажность земли является важнейшим агротехническим параметром в почвоведении, геологии, экологии, садоводстве, который оказывает серьезное воздействие на качественное функционирование экологической системы – биогеоценоза. На сегодняшний день существует множество способов его измерения. В статье расскажем про определение влажности почвы, сравним эффективность различных приборов для ее измерения.

В период вегетации уровень воды в тканях и клетках растительных организмов составляет 70-90 %.

Причины необходимости увлажненности земли

Влажность – это один из главных факторов, влияющих на плодородность грунта. Она реализует такие задачи:

  • обогащение овощных и плодовых культур водой;
  • увлажненность грунта влияет на количество воздуха, уровень соли, а также наличие вредных компонентов;
  • обеспечивает пластичную и плотную структуру земли;
  • влияет на температуру, а также теплоемкость;
  • не допускает выветривания грунтов;
  • показывает способность почвы к агротехническим и сельскохозяйственным процессам.

Для полноценной жизнедеятельности растительного организма его клеткам, а также тканям следует в достаточном объеме получать воду, в частности во время активации жизненные процессов.

Оптимальные уровни увлажненности грунта

Оптимальная влажность грунта – это такая влажность, когда корни культуры не имеют нехватки жидкости, нужной для развития, а также роста. Уровень увлажненности не должен быть выше 60-70 % полной влагоемкости в процессе культивации овощных культур, 70-80 % – зерновых культур и 80-85 % – трав. ».

Совет #1. Следует учесть, что уровень оптимальной влажности во время всходов должен быть выше, нежели в процессе дозревания сельскохозяйственных культур.

На данный момент в экспериментальной разработке находятся два вида полива – струйный и импульсный.

Как определить увлажненность земли

На сегодняшний день существуют такие методы исчисления влажности грунта:

  • термостатно-весовой;
  • радиоактивный – представляет собой измерение излучения радиоактивных веществ, находящихся в земле;
  • электрический – в данном случае производится определение почвенного сопротивления, проводимости, индуктивности, а также емкости;
  • тензометрический – метод основывается на разнице напряжения воды между границами фаз;
  • оптический – этот способ характеризуется отражаемостью световых потоков;
  • экспресс-методы, в частности органолептический.

Самыми легкими и распространенными считаются термостатно-весовой, а также органолептический методы. Первый является наиболее точным, а второй, в свою очередь, требует мало времени и не нуждается в специальном оборудовании. Приспособления для определения электрического сопротивления указаны в таблице.

Определение электрического сопротивления

В данном случае применяются датчики, которые изготовлены из гипса. В этих датчиках размещено 2 электрода, подключенных непосредственно к счетчику. Электрическое сопротивление материала находится в зависимости от наличия в нем жидкости, что, соответственно, измеряет уровень увлажнения земли. В грунте проделывают отверстия до нужной глубины с последующим размещением в них датчиков. Важным является близкий контакт между чувствительным элементом, а также землей (это необходимый фактор для всех влагомеров).

Современные виды датчиков применяют грануловидный материал, окружающий специальную мембрану и перфорированные крышки, которые произведены из стали либо ПВХ. Таким образом достигается более долгий период эксплуатации датчиков, быстрейший отклик, а также точнейшие измерения. Эти датчики допустимо применять в системах полива, которые контролируются автоматически. Приборы для определения влаги, оборудованные диэлектрическими зондами, указаны в таблице.

Измерения с применением диэлектрических зондов TDR и EDR

Определение показателей увлажненности земли при помощи этого способа осуществляется посредством исчисления диэлектрической среды, зависящей от увлажненности грунта. Проверка наличия влаги в земле провоцирует смену ее диэлектрической постоянной, а это дает возможность вымерять соотношение между данными параметрами. Достоинством этого вида датчика является способность передавать измерения без участия проводов.

На сегодняшний день представлены также приспособления, зонды которых постоянно находятся в трубе на необходимой глубине. Показания в этом случае снимаются автоматически, а потом передаются наблюдателю. Соответственно, и цена данных приборов на порядок выше. Приборы для измерения при помощи почвенных тензиометров указаны в таблице.

Название Описание
Комплект тензиометров Thetaprobe Многофункциональное приспособление, применяемое для разнообразных исследований с тензиометрами разных видов на глубине до 90 сантиметров
Тензиометр DCAT 11 компании DataPhysics Instruments GmbH Измеряет поверхностное, а также межфазное натяжение жидкостей
Тензиометры BPA – 2S Дает возможность определять динамическое поверхностное натяжение

Метод тензиометра для измерения влажности

Тензиометр состоит из керамического фильтра, пластиковой трубы и вакуумного манометра, непосредственно после заполнения водой который опускают в землю для исчисления давления. Жидкость передвигается по керамическому элементу, что вызывает смену давления в трубе, а также изменения показаний счетчика. После процедуры гидратации либо осадков в земле вода не попадает в трубку, до момента смещения потенциалов между грунтом и тензиометром. Приспособления представляют собой трубки, доступные для приобретения, разной длины для исчисления показателей влаги в земле на разнообразных глубинах.

Приборы применяются, как правило, для определения начала, а также конца полива. Их предпочтительнее размещать на разные глубины, к примеру 20 или 40 сантиметров. Исходя из результатов исследования прибора, возможно измерить период начала полива (основываясь на данных устройства, размещенного близко к поверхности), а также время конца орошения (согласно показаниям приспособления, находящегося глубже).

Как повысить увлажненность грунта

Для увеличения влажности, например в теплице, следует производить опрыскивание культур, дорожек, тепловых приборов, а также стеклянного потолка и увеличить количество орошений. Помимо шлангового полива, на сегодняшний день в хозяйствах используется: дождевание, подпочвенное орошение и капельный полив. Наиболее популярный вид – это дождевание, в данном случае одновременно поливаются растения, понижается температура листвы, а также испарения, ликвидируется перегрев культур.

Совет #2. Для уменьшения уровня увлажненности земли в тепличной конструкции следует осуществить вентиляцию, поднять температурные показатели воздуха, урезать количество и объем поливов .

Нормы орошений исчисляются в литрах на метр квадратный либо в кубометрах на один га.

Влияет ли регион на увлажненность грунта

Для Подмосковья характерны подзолистые, дерново-подзолистые почвы, серые лесные, черноземы. Для территории Урала – глинистые, песчаные и подзолистые. В Сибири распространены подзолистые почвы. В Поволжье – черноземы и подзолистые, а в Ленинградской области зачастую встречаются подзолистые грунты.

У черноземов диапазон активной влаги составляет 46,7 % веса сухой почвы, у серой лесной почвы – 27,2, у дерново-подзолистой – 26,0. Приведены максимальные показатели. Как видим, регион влияет на влажность почвы посредством типа грунта, а также климатическими особенностями местности, в частности количеством осадков. ».

Как рассчитать оптимальный период и размер полива

Множество проведенных исследований указывают на то, что самыми оптимальными показателями потребности растительного организма в воде можно назвать физиологическое состояние данного растения, сосущая сила листвы, концентрация и осмотическое давление клеточного сока и пр.:

  • зачастую практикуется для определения поливных сроков визуальный способ, то есть по внешним признакам;
  • следующий ориентировочный метод – это измерение увлажненности грунта на ощупь;
  • примерные нормы орошения возможно определить при помощи суммарной радиации. Последняя в данном случае измеряется в периодах между процедурами полива.

Схема полива для разной влажности грунта

Влажность земли относится к главным факторам плодородия. Рассмотрим главные требования к орошению грунта на различных этапах культивации овощных, а также плодовых культур:

  • умеренный полив – нельзя допускать переувлажнения, а также полного высыхания грунта;
  • опрыскивание листы во время цветения – обильный полив осуществляется в летнее время, после окончания цветения в период покоя растения проводится редко;
  • опрыскивание в теплые сезоны – земле летом требуется обильный полив, уменьшаемый в холодное время.

Регулирование увлажненности используется к разным типам земли для сбора самых высоких урожаев. В свою очередь, оно является базой разработки рациональной агротехники, вот почему измерение увлажненности грунта – это самый популярный почвенный анализ. Следует не забывать, что от грамотного полива зависит размер будущего урожая. Поэтому необходимо с полной ответственностью подойти к разработке режима орошения почвы. ».

Ответы на распространенные вопросы

Вопрос №1. Как определить, достаточно ли в земле влаги?

Нужно взять в руку немного земли и сжать ее, если влага между пальцев не проступила, раскройте ладонь. Комок почвы не распался – это означает, что уровень влажности удовлетворительный.

Норма применяемого полива находится в зависимости от сезона, растения, возраста культуры, степени освещения, а также водно-физических особенностей грунта.

Вопрос №2. Как можно повысить влажность почвы в тепличной конструкции?

В данном случае необходимо увеличить полив, немного понизить температуру, а также осуществлять опрыскивание растений, почвы и дорожек водой.

Вопрос №3. В какой период роста растений им необходимо наибольшее количество влаги?

Во время вегетации растительные организмы больше всего нуждаются в интенсивном поливе.

Вопрос №4. Какой метод измерения влажности грунта является оптимальным?

Наиболее простыми и популярными являются термостатно-весовой, а также органолептический методы.

Ошибки садоводов, приводящие к заболачиванию почвы

  • Основная оплошность заключается в неотрегулированном орошении земель.
  • Еще следует отметить отсутствие известкования и корректной подкормки почв, подверженных заболачиванию.
  • Также садоводы зачастую забывают об организации дренажной системы. Все это в целом негативно сказывается на качестве грунта.

Как таковые понятия нехватки влаги либо переувлажнения довольно относительны. Повышенная влажность грунта в сочетании с масштабными минеральными подкормками, а также благоприятными показателями температуры активирует интенсивный фотосинтез, стремительный рост культур и увеличение общей биомассы. Соответственно, при уменьшении температуры аналогичное увеличенное увлажнение влияет уже негативно. Как видим, такой параметр, как влажность почвы очень важен в процессе выращивания любой культуры на различных типах грунтов и в различных климатических широтах.

Изобретение относится к почвоведению, мелиорации и земледелию. На поле, где запланированы наблюдения за влажностью почвы, предварительно, однократно, в начале вегетации растений определяют плотность почвы с ненарушенным сложением общеизвестным методом с помощью режущего кольца или цилиндра, после чего в течение всего вегетационного периода, по мере необходимости, буром, позволяющим отбирать почву с ненарушенным сложением, по горизонтам берут образцы определенного объема и взвешивают их на технических весах, прямо в поле и без сушки образца в термостате (сушильном шкафу) определяют влажность почвы как разность плотностей почв с ненарушенным сложением во влажном и сухом состоянии, отнесенную к плотности почвы с ненарушенным сложением и выраженную в процентах от массы сухой почвы. Достигается упрощение, ускорение и повышение оперативности определения. 1 з.п. ф-лы, 1 табл.

Изобретение относится к почвоведению, мелиорации и земледелию и может быть использовано для оперативного определения влажности почвы, назначения сроков проведения очередных вегетационных поливов всех сельскохозяйственных культур, как в открытом грунте, так и в теплицах.

Известно несколько способов (методов) определения влажности почвы и назначения сроков проведения очередных вегетационных поливов сельскохозяйственных культур, которые можно объединить в следующие группы:

Весовой (термостатно-весовой), основанный на высушивании и взвешивании образцов почвы;

Тензометрический, основанный на измерении напряжения почвенной влаги поверхностными силами, возникающими на границе фаз;

Радиоактивный, в основу которого положено изменение интенсивности радиоактивного излучения помещенных в почву источников радиации при взаимодействии с молекулами воды или атомами водорода;

Электрический, при котором измеряются электрическое сопротивление, проводимость, емкость и индуктивность почвы, зависящие от ее влажности;

Оптический, при котором измеряется степень поглощения или отражения лучевой энергии, зависящие от влажности объекта;

Экспресс-методы: по состоянию растений, морфологическим признакам, физиологическим показателям, органолептическим признакам почвы, по которым определяют обеспеченность растений почвенной влагой и степень ее влажности (Плюснин И.И., Голованов А.И. Мелиоративное почвоведение/ Под ред. А.И.Голованова. - М.: Колос, 1983. - С.61-62; Доспехов Б.А., Васильев И.П., Туликов A.M. Практикум по земледелию/ Учебник для вузов// 2-е изд. перераб. и доп. - М.: Агропроиздат, 1987. - С.58-60; Практикум по почвоведению/ Под ред. И.С.Кауричева. - 4-е изд. перераб. и доп. - М.: Агропромиздат, 1986. - С.97-98; Пиуновский Б.А. Практикум по мелиоративному земледелию. - 3-е изд. перераб. и доп. - М.: Агропромиздат, 1986. - С.46-54; Долгов С.И. Агрофизические методы исследования почв. - М.: Наука, 1966. - С.9-227; Вериго С.А., Разумова. Л.А. Почвенная влага. - Л.: Гидрометеоиздат, 1973. - 328 с.; Роде А.А. Основы учения о почвенной влаге. - T.1. Водные свойства почв и передвижение почвенной влаги. Т.2. Методы определения водного режима почв. - Л.: Гидрометеоиздат, 1965, 1969. - 663 с. и 287 с.; Открытия, изобретения, промышленные образцы и товарные знаки. G01N 5/02 а.с. №1196737, G01N 75/56 а.с. №898308, G01N 5/00 а.с. №1101718, G01N 22/04 а.с. №1101722, G01N 25/56 а.с. №1173283, G01N 23/24 а.с №693184, G01N 23/00 а.с №53/466, G01N 21/80 а.с. 1109610, G01J 1/04 а.с 811084, G01N 21/86 а.с №813209.

Недостатками известных способов определения влажности почвы и сроков проведения вегетационных поливов является значительная трудоемкость, энергоемкость и продолжительность процесса во времени, необходимость применения большого количества лабораторного оборудования, электрических и радиационных и других приборов, достаточно опасных для здоровья обслуживающего персонала и окружающих людей. Ряд способов определения влажности почвы характеризуется низкой точностью, недостаточной для их практического применения.

Наиболее близким техническим решением определения влажности почвы и сроков проведения вегетационных поливов являются весовой способ (термостатно-весовой), при котором пробы почвы для определения влажности почвы в поле берут специальным игольчатым буром, из которого почву перекладывают в предварительно взвешенный стаканчик и закрывают крышкой. В лаборатории влажную почву в стаканчиках взвешивают на технических весах и сушат в сушильном шкафу при температуре 105°С, в течение 12-14 часов до постоянного веса, контролируя его на весах с точностью до 0,01 г. Взвешивание стаканчиков с сухой почвой осуществляют через 6 часов и далее через 8, 10, 12, 14 часов после начала сушки, до постоянного веса. Время сушки зависит от влажности почвы и температурного режима в сушильном шкафу. Расхождения в массе стаканчика с сухой почвой при очередном взвешивании не должны превышать 0.05 г.

Влажность почвы определяют по формуле:

где β в - искомая влажность, % от массы сухой почвы;

В - масса пустого алюминиевого стаканчика, г;

В1 - масса стаканчика с влажной почвой до сушки, г;

В2 - масса стаканчика с сухой почвой после сушки, г.

(Доспехов Б.А., Васильев И.П., Туликов A.M. Практикум по земледелию/Учебник для вузов//2-е изд. перераб. и доп. - М.: Агропромиздат, 1987. - С.57-58).

Недостатком данного способа определения влажности почвы являются значительные затраты труда, времени и электроэнергии, что связано с многократным взвешиванием образца почвы и ее продолжительной сушкой в сушильном шкафу в течение 12-14 часов до постоянного веса.

Техническим результатом, достигаемым изобретением, является упрощение способа определения влажности почвы, снижение затрат труда, времени и электроэнергии и возможность его оперативного применения в полевых условиях.

Результат достигается тем, что на поле, где запланированы наблюдения за влажностью почвы, предварительно в начале вегетации растений определяют плотность сухой почвы с ненарушенным сложением общеизвестным методом, отбором влажных образцов с помощью режущего кольца или цилиндра, их взвешиванием и сушкой в термостате, после чего в течение всего вегетационного периода, по мере необходимости, буром, позволяющим отбирать почву с ненарушенным сложением по горизонтам, берут образцы влажной почвы определенного объема и взвешивают их на технических весах, прямо в поле и без сушки образца в термостате (сушильном шкафу) определяют влажность почвы, как разность плотностей почвы с ненарушенным сложением во влажном и сухом состоянии, отнесенную к плотности сухой почвы с ненарушенным сложением и выраженную в процентах от массы сухой почвы.

Способ определения влажности почвы заключается в том, что на поле, где запланированы наблюдения за влажностью почвы предварительно в начале вегетационного периода, определяют плотность сухой почвы с ненарушенным сложением общеизвестным методом, отбором влажных образцов с помощью режущего кольца или цилиндра с последующим взвешиванием и сушкой в термостате. После этого в течение всего вегетационного периода по мере необходимости ежедневно, подекадно, до и после выпадения осадков и проведения поливов по горизонтам отбирают образцы влажной почвы определенного объема. Отбор проб на влажность производят буром Неговелова, буром-цилиндром ТСХА или любым другим буром, позволяющим отбирать образцы почвы с ненарушенным сложением. Эти устройства позволяют отбирать пробы влажной почвы с ненарушенным сложением определенного объема. Отобранные образцы влажной почвы прямо в поле взвешивают на технических весах с точностью до 10 мг и без сушки в термостате (сушильном шкафу) определяют влажность почвы. Она находится как разность плотностей почвы с ненарушенным сложением во влажном и сухом состояниях отнесенная к плотности сухой почвы с ненарушенным сложением, выраженная в процентах к массе сухой почвы по формуле:

где βв - влажность почвы, % массы сухой почвы

p - масса образца влажной почвы, г;

v - объем образца влажной почвы, соответствующий объему бура, см 3 ;

dv - плотность сухой почвы с ненарушенным сложением, г/см 3 .

Исследования, проведенные в лаборатории кафедры «Мелиорация почв» «НГМА», показали достаточную степень сходимости результатов определения влажности почвы, эталонным термостатно-весовым и новым способами (таблица 1). Исследования проводились в четырехкратной повторности с двумя горизонтами 0-20 и 20-40 см, которые имели плотность сухой почвы с ненарушенным сложением соответственно 1.15 и 1.30 г/см 3 . При доверительной вероятности 95% точность опыта оказалась достаточно высокой и составила 0.69%, а наименьшая существенная разность между вариантами оказалась равной 0.58% м.с.п. В соответствии с этим погрешность опыта оказалась несущественной и между вариантами составила 0.26-0.27% м.с.п. Следовательно, точность определения влажности почвы новым способом достигает 99%, относительная ошибка составляет не более 1%. Это позволяет использовать новый способ определения влажности почвы для практических целей в области мелиорации, орошаемого земледелия и растениеводства для наблюдения за динамикой влажности почвы, в водобалансовых исследованиях и при назначении сроков проведения вегетационных поливов.

Таблица 1
Влияние различных способов на точность определения влажности почвы
Варианты опыта Влажность, βв % м.с.п. Погрешность, % м.с.п. Относительная ошибка, %
Плотность почвы с ненарушенным сложением 1.15 г/см 3 . Термостатно-весовой способ 27.50 - -
Плотность почвы с ненарушенным сложением 1.15 г/см 3 . Новый способ 27.23 0.27 1.00
Плотность почвы с ненарушенным сложением 1.30 г/см 3 . Термостатно-весовой способ 27.81 - -
Плотность почвы с ненарушенным сложением 1.30 г/см 3 . Новый способ 27.55 0.26 0.99
Точность опыта, m % 0.69 - -
Наименьшая существенная разность, НСР 095, % м.с.п. - 0.58 -

Новый ускоренный способ определения влажности почвы значительно уменьшает затраты времени, труда и электроэнергии при его применении в сравнении с эталоном. При определении влажности этим способом отсутствует сушка влажного образца в термостате, на что уходит не менее 12-14 часов и расходуется значительное количество электроэнергии, примерно 15-20 кв.час. Отсутствует необходимость многократного взвешивания образца высушенной почвы. Главным достоинством нового способа определения влажности почвы является возможность оперативного определения влажности почвы непосредственно на поле, без использования громоздкого лабораторного оборудования.

1. Способ определения влажности почвы, включающий отбор проб для анализа, их взвешивание, отличающийся тем, что на поле, где запланированы наблюдения за влажностью почвы, предварительно однократно в начале вегетации растений определяют плотность сухой почвы с ненарушенным сложением общеизвестным методом, отбором влажных образцов с помощью режущего кольца или цилиндра с последующим взвешиванием и сушкой в термостате, после чего в течение всего вегетационного периода, по мере необходимости, буром, позволяющим отбирать почву с ненарушенным сложением, по горизонтам отбирают образцы влажной почвы определенного объема и взвешивают на технических весах, прямо в поле и без сушки образца в термостате (сушильном шкафу) определяют влажность почвы как разность плотностей почвы с ненарушенным сложением во влажном и сухом состоянии, отнесенную к плотности сухой почвы с ненарушенным сложением и выраженную в процентах от массы сухой почвы.

2. Способ по п.1, отличающийся тем, что образцы влажной почвы с ненарушенным сложением для определения влажности почвы можно отбирать буром Неговелова или буром-цилиндром ТСХА.

Материал подготовили:

Президент Ассоциации садоводов России (АППЯПМ), доктор сельскохозяйственных наук

Д.с.-х. н, профессор, ФГБОУ ВПО «Саратовский ГАУ им. Н.И.Вавилова»

Данилова Т.А.
Специалист Ассоциации АСП-РУС, студентка МичГАУ

С использованием материалов доктора Кшиштофа Кламковски,
профессора Вальдемара Тредера
Институт Садоводства в Скерневицах

Методы измерения влажности почвы

Фото 1. Полив интенсивного сада с помощью капельного орошения

Плодовые растения характеризуются относительно высоким содержанием воды, что делает в наших климатических условиях обязательным проведение орошения садов. В настоящее время доминируют насаждения, привитые на карликовых и полукарликовых подвоях, характеризующихся слабо развитой корневой системой, благодаря которой они поглощают воду из меньшего объема почвы. Для оптимизации орошения садов и получения высоких урожаев с минимальным расходом воды, следует использовать надежные критерии для определения режима орошения.

Целесообразен мониторинг содержание воды в почве и регулирование её поступление в растения только по необходимости. Следует контролировать уровень влажности почвы во избежание затопления растений. Чрезмерное орошение, приводит к перерасходу воды, способствует вымыванию минеральных веществ из почвы и ограничивает дыхание корней, что, в свою очередь, может привести к задержке роста растений.

Фото 4. Система передачи и контроля капельным поливом

Свойства воды в почве

Водные свойства почвы могут быть охарактеризованы путем определения количества воды, содержащейся в ней и измерения силы с которой вода связана (потенциал воды). Значения потенциала указывают на доступность содержащейся в почве воды растениям. Когда потенциал воды в почве уменьшается, вода становится менее доступна. Существует ряд методов измерения значений содержания (или потенциала) воды в почве. Ниже приводится краткий обзор самых важных и наиболее часто используемых в садоводческой практике методов измерения влажности почвы.

Фото 5. Капельный полив интенсивного сада яблони

Измерение водного потенциала

Фото 6. Тензиометр

Метод тензиометра

Тензиометр включает керамический фильтр, пластиковую трубу, вакуумный манометр (вакуумметр). После того как он заполняется водой его помещают в почву для определения давления. Вода движется в керамическом элементе, что приводит к изменению давления в трубе и изменениям показания счетчика. После гидратации (или дождя) в почве вода не поступает в трубку, пока не произойдет смещение потенциалов между почвой и тензиометром. Тензиометры — коммерчески доступные трубки различной длины для измерения водного потенциала в почве на различных глубинах. Тензиометры часто масштабируются в диапазоне от 0 до (-)100 centybarów (или в других единицах давления). На практике, их показания меньше и составляют от 0 (полностью насыщенной почвенной воды) до (-) 60 — 70 сантибаров (1 сантибар соответствует 1 кПа или 10 мбар).

Установка состоит из полости с отверстием, близким к диаметру тензиометра (например, с использованием металлической трубки). Суспензия с почвой и водой выливается в отверстие трубки, которая ставится в тензиометр.

Тензиометры используются в основном для принятия решения о начале и окончании полива. Их лучше устанавливать на разных глубинах (например, 20 см и 40 см). По показаниям тензиометра, можно определить время начала орошения (на основе показаний тензиометра расположенного ближе к поверхности) и время окончания полива (по данным тензиометра размещенного глубже).

Фото 7. Универсальный контролер влажности с пятью датчиками на разных глубинах

Показания в диапазоне 10-30 centybarów соответствуют полевой влагоемкости, при которой влажность почвы является оптимальной (для легких почв — 30 -40 centybarów). Понижение водного потенциала (заметим, что в измерительных приборах знак минус часто упускается из виду, вследствие чего наблюдаются более высокие значения в вакуомметре) показывает состояние почвы, в меньшей степени нуждающейся в поливе. Не забудьте удалить тензиометр до наступления зимы. В последние годы разработан метод, который позволяет подключать электронные тензиометры, с помощью которых проводятся автоматические учеты и записи данных.

Фото 8. График влажности по различным глубинам при капельном поливе с помощью электронных тензиометров

Измерение электрического сопротивления

При этом методе используются датчики (в виде блоков, цилиндров), изготовленные из пористого материала (гипс), в которых размещены два электрода, подключенные к счетчику. Электрическое сопротивление материала зависит от содержания в нем воды, а это, в свою очередь, определяет содержание влаги в почве.

Фото 9. Электрические датчики влажности

В почве делают отверстия до необходимой глубины и размещают в них датчики. Существенным является тесный контакт между чувствительным элементом и почвой (это относится ко всем влагомерам).
Новые типы датчиков (датчики gramilar матрицы) используют материал в виде гранул, который окружает специальную мембрану и перфорированные крышки, изготовленные из стали или ПВХ. Это обеспечивает более длительный срок службы датчиков, более быстрый отклик и более точные измерения. Датчики такого типа могут быть использованы в системах автоматического контроля оросительных систем.

Измерения с помощью диэлектрических зондов TDR и EDR (емкостное)

Фото 10. Датчик TDR-100

Определение содержания влаги в почве при использовании данного метода происходит путем измерения диэлектрической среды, которая зависит от влажности почвы. Изменения содержания воды в почве вызывает изменения её диэлектрической постоянной, что позволяет определить соотношение между этими параметрами.

С развитием технологий, этот метод становится все более популярным. Датчики этого типа (в частности, «смещение») находят все более широкое использование для мониторинга влажности почвы в поле и чистой влаги в субстратах у культур в защищенном грунте. Они просты в использовании и показываемые ими данные характеризуются высокой степенью точности. Для повышения точности прибора, его необходимо откалибровать к конкретному типу почвы. В соответствии с требованиями покупателя, производитель должен предоставить полный набор калибровочных для различных почв и субстратов. В саду выкапывают ямки и размещают датчики на стену ямки на нужной глубине. Влажность почвы определяется портативным измерителем. В последние годы такие датчики нашли широкое применение в системах автоматического контроля полива.

Преимущества этого типа датчика — это возможность передавать измерения без проводов (по радио или на большие расстояния через сети мобильной связи).

Почвы помещают в специальную трубку из ПВХ (диаметром в несколько см). Измерение основано на движение зонда вдоль трубки (вставляется и извлекается). С помощью зонда подключаемого к счетчику, можно прочитать содержание воды в выбранном почвенном профиле (например, 0 — 10 см). Недостатком такого метода является трудоемкость. Чтобы дать правильную оценку состоянию почвы будет недостаточно одной трубки. Чем больше точек измерения, тем достовернее будет информация о содержании воды в почве на выбранном участке.

На рынке имеются также устройства, в которых зонды постоянно размещаются в трубе на выбранной глубине. Данные снимаются автоматически и передаются исследователю. Стоимость таких устройств намного больше.

Фото 11. Интенсивный сад с капельным орошением

Рассказать друзьям