Автоматическое управление холодильными установками. Автоматизация холодильных машин

💖 Нравится? Поделись с друзьями ссылкой

ЛЕКЦИЯ 9

Тема «КИП и автоматика холодильной машины»

Цель: Изучить устройство и принцип действия контрольно-измерительных приборов и приборов автоматики холодильных машин вагонов

1. Холодильные машины и установки конддиционированяе воздуха. Пигарев В.Е., Архипов П.Е. М., Маршрут, 2003.

2. Обучающая контролирующая программа «Кондиционирование воздуха в пассажирском вагоне».

План лекции:

1. Принципы автоматизации холодильных установок.

2. Основные понятия об автоматическом регулировании

приборов автоматики.

4. Регуляторы заполнения испарителя хладагентом.

Принципы автоматизации холодильных установок

Параметры окружающей среды - температура, влажность, направление и сила ветра, осадки, солнечная радиация непрерывно изменяются в течение суток, а также вследствие быстрого перемещения вагона. Соответственно изменяется и тепловая нагрузка на вагон. Чтобы в этих условиях поддерживать стабильные параметры воздуха внутри вагона, необходимо непрерывно изменять производительность системы охлаждения (летом) или отопления (зимой), а если это необходимо, то и производительность системы вентиляции. Следовательно, как бы совершенны ни были сами по себе системы вентиляции, отопления, охлаждения и электроснабжения и как бы хорошо ни были согласованы их параметры между собой и с тепловыми нагрузками на вагон, установка кондиционирования воздуха не сможет обеспечить комфортных условий в вагоне, если её управление не будет автоматизировано, а холодильная машина обеспечивать требуемую тепловую обработку скоропортящегося груза и поддерживавать заданный температурный режим охлаждаемого помещения. На рефрижераторном подвижном составе применяются холодильные установки, автоматизированные полностью или частично. Степень автоматизации холодильной установки выбирается в зависимости от ее конструкции, размеров и условий эксплуатации. В полностью автоматизированных установках пуск, отключение машин и регулирование холодопроизводительности осуществляются автоматически без вмешательства обслуживающего персонала. Такими установками оборудованы АРВ и секции ZB -5. Для полной автоматизации требуются большие первоначальные затраты и последующие расходы на обслуживание сложных аппаратов и приборов. Однако полная автоматизация холодильных установок АРВ позволила отказаться от сопровождения вагонов в пути следования обслуживающим персоналом и перейти на периодическое их техническое обслуживание на специализированных пунктах (ПТО АРВ).

При эксплуатации частично автоматизированных холодильных установок необходимо постоянное дежурство обслуживающего персонала. Наличие персонала позволяет отказаться от автоматизации включения и выключения холодильной машины, процесса оттаивания воздухоохладителя и др. В результате достигается значительное снижение первоначальных затрат. Защитная же автоматика в таких машинах должна предусматриваться в полном объеме, как и для полностью автоматизированной установки.


Из частично автоматизированных установок условно выделяют полуавтоматизированные установки, в которых включение и выключение оборудования выполняет вручную механик, а поддержание установленного режима работы осуществляют приборы автоматики. К полуавтоматизированным холодильным установкам относятся установки 5- вагонной секции БМЗ.

Автоматизированные холодильные установки всегда работают в оптимальном режиме. Это позволяет сократить время достижения требуемой температуры в грузовом помещении, увеличить за счет этого межремонтные сроки эксплуатации оборудования и снизить расход электроэнергии. Автоматизированная холодильная установка точнее поддерживает заданный температурный режим в охлаждаемом помещении, чего невозможно достигнуть при ручном регулировании. Это позволяет сохранить качество перевозимых грузов и уменьшить их потери при транспортировке. Система автоматизации надежно защищает холодильную установку от опасных режимов работы, увеличивая срок ее службы и обеспечивая безопасность для обслуживающего персонала. Автоматизация повышает культуру производства, улучшает и облегчает условия труда обслуживающего персонала. Практически обязанности поездной бригады сводятся к периодическим осмотрам и проверкам режима работы оборудования и к устранению выявленных неисправностей. Естественно, системы автоматики различны. Применительно к системам автоматики установки кондиционирования воздуха можно классифицировать по трем признакам: по регулируемым параметрам воздуха: по температуре или по влажности, или по обоим этим параметрам, т.е. по теплосодержанию; по характеру процесса обработки воздуха: мокрые камеры увлажнения и осушки с непосредственным разбрызгиванием и фильт189 рацией паровоздушной смеси, или камеры со смачиванием поверхности и также непосредственным тепломассообменом, или камеры с применением теплообмена через холодную (или горячую) стенку, охлаждаемую холодной водой или рассолом (нагреваемую горячей водой или рассолом), или камеры с воздухоохладителями непосредственного охлаждения, или камеры с твердыми или жидкими влагопоглотителями - адсорбентами; по схеме обработки воздуха: прямоточные камеры (без использования рециркуляции), или камеры с постоянной или переменной величиной первичной рециркуляции, или камеры с двойной рециркуляцией постоянной или переменной. Специальное устройство для регулирования влажности (специальная осушка воздуха осуществляется более глубоким его охлаждением, чем необходимо для поддержания температурного режима с последующим подогревом) в вагонных установках кондиционирования воздуха не применяется. Летом, когда требуется осушка воздуха, она выполняется одновременно с процессом его охлаждения в воздухоохладителе. Зимой, когда необходимо увлажнение воздуха, оно осуществляется за счет влаговыделения пассажиров. Таким образом, по первому признаку процесс автоматического регулирования работы вагонных установок кондиционирования является наиболее простым и сводится к поддержанию температуры в помещениях вагона в заданных пределах. Мокрые камеры, твердые и жидкие адсорбенты, теплообмен с помощью водяного или рассольного охлаждения в пассажирских вагонах не применяются. Из этого следует, что и по второму признаку системы автоматики вагонных кондиционеров довольно просты. Ни переменная, ни тем более двойная рециркуляция как постоянная, так и переменная, в вагонах не применяется. Наличие рециркуляции с постоянным соотношением наружного и рециркуляционного воздуха усложняет лишь систему вентиляции, не внося каких-либо из-менений в систему автоматического управления. Таким образом, и по третьему признаку, а значит, и в целом системы автоматики установок кондиционирования пассажирских вагонов по сравнению с системами автоматики других кондиционеров как комфортных, так и технологических, являются относительно простыми. Для поддержания температуры в охлаждаемом помещении в заданном интервале приходится регулировать холодопроизводительность установки, рассчитанную на максимальную потребность в холоде. Регулиро-вание может быть плавным или позиционным (ступенчатым).

Плавное регулирование можно выполнить: плавным изменением частоты вращения вала компрессора; перепуском (байлансированием) пара из нагнетательной линии во всасывающую; изменением рабочего объема компрессора (в винтовых компрессорах); открытием всасывающего клапана на части хода поршня и др. Многие из перечисленных выше способов применяются редко из-за сложности их конструкционного осуществления или из-за значительных энергетических потерь.

Позиционное регулирование можно выполнять изменением коэффициента рабочего времени, т.е. изменением продолжительности работы холодильной установки за цикл. Этот способ широко применяется в системах с большой тепловой аккумулирующей способностью. Позиционное регулирование выполняется также ступенчатым изменением частоты вращения коленчатого вала компрессора, используя многоскоростные электродвигатели. Частоту вращения вала электродвигателя изменяют переключением полюсов статора. На рефрижераторном подвижном составе применяется регулирование холодопроизводительности изменением коэффициента рабочего времени. Цикличная работа холодильной установки достигается периодическими ее включениями и выключениями. Отношение времени работы холодильной установки р к общей продолжительности цикла называется коэффициентом рабочего времени: b = р/ .

Коэффициент рабочего времени можно также определить как отношение теплопритоков в охлаждаемое помещение Q т к холодопроизводительности установки Q 0, т.е. b = Qт /Q 0.

Температуру в охлаждаемом помещении рефрижераторных вагонов обычно регулируют периодическими включениями и отключениями холодильной установки с помощью двухпозиционного автоматического прибора - термостата (реле температуры). При цикличной работе температура в охлаждаемом помещении не остается постоянной, а изменяется в определенных пределах, которые зависят от настройки дифференциала термостата. При увеличении дифференциала продолжительность цикла и пределы колебания температуры увеличиваются. Когда температура в охлаждаемом помещении достигнет верхнего установленного предела, термостат включит холодильную установку. После того как температура в охлаждаемом помещении достигнет нижнего предела, термостат подает электрический импульс на отключение установки. При увеличении теплопритоков в вагон продолжительность работы установки повышается.

2. Основные понятия

об автоматическом регулировании

Система автоматического управления - это совокупность объекта управления и управляющего устройства, осуществляющих какой-нибудь процесс полностью или частично без вмешательства обслуживающего персонала. Объект управления - комплекс технических элементов, выполняющих основную технологическую задачу - характеризуется значениями некоторых величин на его входе и выходе. Если в качестве объекта управления рассматривать рефрижераторный вагон, то величиной на выходе будет температура в грузовом помещении t ваг, а величиной на входе - холодопроизводительность холодильной машины Q 0. Величину на выходе, которую требуется поддерживать в определенном интервале, называют регулируемым параметром и обозначают X 0. Величина на входе объекта - это параметр, с помощью которого управляют значением величины на выходе. Внешнее воздействие на объект управления, вызывающее отклонение регулируемого параметра от исходного значения Х 0, называется нагрузкой. В данном случае это будут теплопритоки в вагон Q н. Действительное значение регулируемого параметра X под воздействием нагрузки Q н отклоняется от заданного значения X 0. Такое отклонение называется рассогласованием: Х=Х – X 0. Воздействие на объект, которое уменьшает рассогласование Х, является регулирующим воздействием. В нашем примере это будет холодопроизводительность машины Q 0. Если Q 0 = Qн , то Х = 0, а регулируемый параметр не изменяется: Х 0 - const.

Устройство, воспринимающее рассогласование АХ и воздействующее на объект для уменьшения рассогласования, называется автоматическим регулятором, или просто регулятором.

Объект и регулятор образуют систему автоматического регулирования (рис. 1).

Рис. 1. Система автоматического регулирования

Регулирование может выполняться по нагрузке и рассогласованию. В первом случае регулятор

воспринимает изменение нагрузки и на столько же изменяет регулирующее воздействие, поддерживая равенство Q 0 = Qн . Однако проще следить за отклонением регулируемого параметра Х 0, т.е. изменять регулирующее воздействие Q 0 в зависимости от значения Х.

Системы автоматизации различаются по своему назначению: управления, сигнализации, защиты, регулирования и комбинированные. Между собой они отличаются составом элементов и связями между, ними. Структурная схема автоматической системы определяет, из каких звеньев она состоит. Например, в систему автоматического регулирования входят объект регулирования и автоматический регулятор, состоящий из нескольких элементов - чувствительного элемента, задающего устройства, элемента сравнения, регулирующего органа и т.д. На рис. 2 показана простая одноконтурная система автоматического регулирования, широко применяющаяся при автоматизации холодильных установок. Работа объекта характеризуется параметром X на выходе, по которому ведется регулирование. На объект воздействует внешняя нагрузка Q н. Управление осуществляется регулирующим воздействием Q 0. Автоматический регулятор должен так изменять величину Q 0, чтобы значение X. соответствовало заданному Х 0. В системе имеются цепи прямой и обратной связи. Цепь прямой связи служит для формирования и передачи к объекту регулирующего воздействия Q 0; по цепи обратной связи поступает информация о ходе процесса. В цепь прямой связи входят усилитель (У), исполнительный механизм (ИМ) и регулирующий орган (РО). В цепь обратной связи включен чувствительный элемент (ЧЭ).

Рис. 2. Структурная схема автоматического регулирования

Обе цепи замыкаются элементом сравнения (ЭС). В регуляторе могут не применяться отдельные элементы (усилитель, исполнительный механизм). Некоторые детали могут выполнять функции нескольких элементов.

Система работает следующим образом. Чувствительным элементом регулятор воспринимает регулируемый параметр X и преобразует его в величину Х 1, удобную для дальнейшей передачи.

Эта преобразованная величина поступает в элемент сравнения, на другой вход которого подается сигнал Х 2, представляющий собой задание регулятору от устройства 3. В элементе сравнения производится операция вычитания, в результате которой получается рассогласование Х = X Х 0.

Сигнал Х заставляет работать остальные элементы схемы. В усилителе его мощность повышается до Х 3 и воздействует на исполнительный механизм, который преобразует этот сигнал в удобный для использования вид энергии X 4 и изменяет положение регулирующего органа. В результате изменяется поток энергии или вещества, подводимого к объекту, т.е. изменяется регулирующее воздействие.

По взятому для примера рефрижераторному вагону можно проследить за взаимодействием элементов структурной схемы (рис. 1 и 2).

Температуру в вагоне X воспринимает термочувствительная система термостата, преобразует ее в давление Х 1 и воздействует на пружину термостата ЭС, отрегулированную на определенное усилие сжатия винтом задающего устройства 3. При повышении температуры в вагоне t ваг в результате теплопритоков Q н увеличивается рассогласование X .

При определенном значении t ваг замыкаются контакты термостата, включающие электрическую систему управления холодильной машиной У, которая получает энергию Е от внешнего источника. Исполнительные механизмы ИМ электрической системы включают холодильную машину РО, которая воздействует величиной Q н на объект. Структурные схемы других автоматических устройств можно получить из рассмотренной схемы. Сигнализирующая система отличается от системы регулирования тем, что в ней нет исполнительного механизма. Цепь прямой связи разрывается, и сигнал Х3 подается обслуживающему персоналу (звонок, включение сигнальной лампы), который и должен произвести регулирование. В системе автоматической защиты вместо исполнительного механизма и регулирующего органа имеется устройство управления, которое отключает холодильную установку. В системах сигнализации и защиты сигнал Х3 изменяется скачкообразно, когда величина X достигает заданного значения. Автоматические регуляторы классифицируются по назначению: регуляторы давления, температуры, уровня и т.д. Они различаются конструкцией чувствительного элемента. Регуляторы бывают прямого и непрямого действия. Если мощность сигнала рассогласования достаточна для воздействия на регулирующий орган, регулятор считается прямодействующим. В регуляторах непрямого действия для привода регулирующего органа используется внешний источник энергии Е (электрический, пневматический, гидравлический, комбинированный), подводимой через усилитель мощности У.

В зависимости от способа воздействия на объект различают регуляторы плавного и позиционного (релейного) действия. В регуляторах плавного действия регулирующий орган может занять любое положение в пределах между максимальным и минимальным. У позиционных регуляторов регулирующий орган может занимать два или несколько определенных положений. По типу задающего элемента регуляторы бывают стабилизирующие, программные, следящие, оптимизирующие. Стабилизирующие регуляторы поддерживают регулируемую величину на постоянном заданном уровне. Программные регуляторы изменяют регулируемую величину по заранее намеченной программе, следящие - в зависимости от изменений какого-нибудь внешнего параметра, Оптимизирующие регуляторы, анализируя внешние параметры, обеспечивают оптимальное ведение процесса. В холодильных установках чаще применяются стабилизирующие регуляторы.

Система регулирования согласовывает характеристики отдельных элементов машины при изменений их холодопроизводительности.

Характеристики представляют собой зависимости холодопроизводительности, расхода энергии на работу компрессора и охлаждение конденсатора от внешних условий, т.е. от температуры окружающей среды. Они позволяют установить взаимную связь параметров компрессора, испарителя и конденсатора. Построение характеристик проводят по уравнениям теплового баланса системы «холодильная машина - охлаждаемое помещение» и энергетическим соотношениям, описывающим работу основных элементов машины с учетом изменения по времени параметров хладагента и окружающей среды. При этом балансовые и энергетические соотношения представляют в функции температуры охлаждаемого объекта (температуры кипения хладагента) и температуры окружающей среды (температуры конденсации хладагента).

Процесс регулирования машины на требуемый режим охлаждения или на заданный температурный режим теоретически может быть реализован количественным или качественным способом. Первый предусматривает изменение расхода хладагента через испаритель, второй - изменение его параметров. Однако температура охлаждаемого объекта определяется температурой кипения хладагента, которая самоустанавливается в зависимости от холодопроизводительности компрессора, испарителя и конденсатора. Поэтому процесс регулирования определяет не только баланс холодопроизводительности компрессора Q oк и испарителя Q ои, но и температурный уровень отвода или подвода теплоты. Следовательно, регулирование паровой компрессорной машины представляет собой комбинированный процесс, сочетающий количественный и качественный способы.

Исполнительным органом системы регулирования (регулятором холодопроизводительности) служит дроссельный вентиль. Рабочий режим машины, который соответствует точке пересечения характеристик компрессора и испарителя Q oк = Q ои, обеспечивают изменением проходного сечения вентиля. Схема согласования характеристик основных элементов машины при некотором постоянном значении температуры окружающей среды приведена на рис. 3.

Характеристика испарителя Q oк =f (T 0) (T 0 - температура кипения хладагента) отвечает изменению теплопритоков охлаждаемого помещения, характеристика компрессора Q ок = f (T 0) - регулированию его производительности, расходная характеристика дроссельного вентиля Q дв= f (T 0) устанавливает степень его закрытия или открытия. Характеристики перечисленных элементов машины при изменении режима ее работы показаны штриховыми линиями. Точка А определяет рабочую точку системы «машина - охлаждаемое помещение» как объекта регулирования при переходе с одного режима работы на другой. При этом точка А ′соответствует рабочему режиму в процессе регулирования компрессора, а точка А ′′- при изменении характеристики испарителя. Регулирование холодопроизводительности машины с поршневым компрессором осуществляют плавным или ступенчатым (позиционным) регулированием его производительности. В машинах малой и средней мощности получили распространение следующие способы плавного регулирования с помощью внешних или встроенных конструктивных устройств: перепуск хладагента со стороны нагнетания на всасывание (балансирование), который осуществляют регулирующими вентилями, управляемыми от датчика давления или температуры; дросселирование на всасывании с переводом компрессора на работу при пониженном давлении всасывания; изменение объема мертвого пространства подключением к нему дополнительного внешнего объема; изменение частоты вращения вала компрессора.

Рис. 3. Характеристики основных элементов холодильной машины

Ступенчатое регулирование в машинах малой и средней холодопроизводительности в основном выполняют способом «пуск-остановка» с предельной частотой циклов до 5-6 в 1 ч; для многоступенчатых компрессоров эффективно используют отключение отдельных цилиндров путем отжатия всасывающих клапанов с помощью механических толкателей. Управление движением толкателей производят гидравлическими, пневматическими или электромагнитными приводами. Внедряется система электронного регулирования производительности с воздействием на всасывающие клапаны электромагнитного поля.

Примером ступенчатого пропорционального регулирования является регулирование температуры воздуха в вагоне летом, когда с увеличением теплопритока в вагон увеличивается холодопроизводительность холодильной установки (увеличиваются частоты вращения вала компрессора или включается большее количество его цилиндров). В этом случае импульсом, сигнализирующим необходимость увеличения холодопроизводительности, является дальнейшее повышение температуры воздуха в вагоне.

Пример пропорционального плавного регулирования - регулирование температуры воздуха в вагоне зимой, когда с увеличением теплопотерь вагона плавно увеличивается температура воды в котле водяного отопления. В этом случае импульсом, сигнализирующим необходимость повышения температуры воды в котле, является изменение температуры наружного воздуха. Наиболее совершенным, но и наиболее сложным видом пропорционального регулирования является изодромное регулирование, основанное на применении чувствительной и гибкой обратной связи, благодаря которой регулируемый параметр изменяется в очень узких пределах или даже держится на практически постоянном уровне. Первоначально изодромное регулирование применялось для обеспечения постоянной скорости вращения деталей машин, откуда и получило свое название (по-гречески изо - постоянный, равный; дромос - бег, скорость). В настоящее время оно применяется в самых различных процессах, например, для автоматического вождения морских кораблей по заданному курсу.

Вследствие сложности аппаратуры, трудных условий ее работы при вибрации и тряске, а главное из-за отсутствия практической необходимости в предельно точном регулировании температуры воздуха, в установках кондиционирования воздуха вагонов изодромное регулирование не применяется.

При выборе способа регулирования необходимо учитывать начальные и эксплуатационные затраты, технологичность и надежность конструкции. Для оценки энергетической эффективности системы регулирования используют отношение холодопроизводительности компрессора при заданной степени регулирования к номинальной: =qop/qон = f(T 0). Показатели сравнительной эффективности основных способов регулирования производительности поршневых компрессоров приведены на рис. 4. Для способов пуск-остановка (линия 1) и отжатие впускных клапанов (линия 2 ) характерны малые энергетические потери и практическая независимость от режима работы. При дросселировании на всасывании (линия 3 ) наблюдается резкое падение эффективности с ростом температуры кипения хладагента, поэтому этот способ применяют в компрессорах, которые работают в узком диапазоне давлений кипения. Балансирование (линия 4 ) - наименее эффективный вариант регулирования, так как он связан с потерями энергии сжатого пара при его перепуске, повышением температуры всасывания хладагента, а следовательно, и температуры нагнетания; энергетические потери при этом способе соответствуют степени уменьшения холодопроизводительности машины.

В холодильных машинах с винтовыми компрессорами используют следующие способы регулирования холодопроизводительности: дросселирование на всасывании, балансирование, изменение частоты вращения вала, золотниковой системой.

Дросселирование обеспечивают автоматическим перекрытием дроссельного клапана, установленного на входе в компрессор. Эффективность этого способа ограничена снижением производительности до 70% от номинальной; при более глубоком дросселировании существенно снижается экономичность.

Рис. 4. Энергетическая эффективность основных способов регулирования производительности поршневых компрессоров

Балансирование осуществляют перепуском части хладагента через безопасный клапан со стороны нагнетания на всасывание.

Применение такого способа обычно ограничивают компрессорами сухого сжатия.

Наиболее экономичное регулирование путем отключения в процессе сжатия части объема рабочих полостей обеспечивает золотниковая система. Несмотря на усложнение конструкции компрессора, такая система открывает дополнительные схемные возможности усовершенствования паровых холодильных машин.

Автоматизация работы холодильной машины позволяет с высокой точностью поддерживать требуемый уровень параметров процесса охлаждения, отвечающий оптимальному технологическому режиму, а также частично или полностью исключить участие обслуживающего персонала в эксплуатации холодильного оборудования.

В паровых компрессорных машинах объектами автоматизации являются теплообменные аппараты, в частности степень заполнения испарителя жидким хладагентом и давление процесса конденсации. Объективным и технически наиболее удобным показателем, отражающим степень заполнения испарителя, служит перегрев пара

на выходе из него. Действительно, когда часть теплопередающей поверхности испарителя обеспечивает перегрев паров хладагента, уменьшение его подачи приводит к снижению степени заполнения, а следовательно, к росту перегрева. При этом повышение температуры перегрева сверх расчетного уровня ухудшает энергетические показатели машины и надежность ее работы. Подача хладагента в испаритель в количестве, превышающем возможности процесса теплопередачи, связана с переполнением испарителя и снижением перегрева. Последнее приводит к снижению холодопроизводительности машины, а в ряде случаев к работе компрессора на влажном паре, что может привести к гидравлическому удару.

Системы автоматического регулирования степени заполнения испарителя по перегреву паров хладагента выполняют плавными и позиционными (обычно двухступенчатыми). В качестве автоматического регулирования в плавных системах широко используют терморегулирующие вентили (ТРВ), в которых величину перегрева паров хладагента получают в виде разности между температурой пара, выходящего из испарителя, и температурой кипения хладагента. Терморегулирующие вентили, обеспечивающие процесс дросселирования хладагента от давления конденсации до давления испарения, устанавливают на линии между конденсатором и испарителем.

Принципиальная схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ, используемая в хладоновых машинах РПС, приведена на рис. 5. Чувствительный элемент измерительной головки 1 терморегулирующего вентиля, выполненный в виде мембраны 2 или сильфона, находится под воздействием разности давлений перегретого пара, соответствующего температуре перегрева, и хладагента на выходе из испарителя 7 , отвечающего температуре кипения. Перегретый пар, который образуется в термосистеме, состоящей из термобаллона 6 и капилляра 3 , поступает в пространство над мембраной; пространство под мембраной связывают уравнительной трубкой 4 с всасывающей линией компрессора 5 . При этом уравнительную трубку присоединяют к всасывающей линии в месте установки термобаллона. В некоторых конструкциях в термобаллон вводят твердый поглотитель и всю термосистему заполняют газом.

Перемещение штока 12 в результате деформации чувствительного элемента при изменении температуры перегрева обеспечивает открытие или закрытие запорного клапана 11 , регулирующего поступление жидкого хладагента из конденсатора в испаритель по линии 10 . С помощью регулировочного винта 8 изменяют силу затяжки пружины 9 и, следовательно, необходимую величину температуры перегрева. В процессе автоматического регулирования ТРВ должен обеспечить оптимальный уровень заполнения испарителя и устойчивость системы во всем требуемом диапазоне изменения холодопроизводительности, что особенно важно для холодильных машин рефрижераторного подвижного состава. Практически устойчивая работа системы ТРВ начинается при перегреве (3 6) К. Для расширения диапазона регулирования и повышения его устойчивости в системе может быть использовано несколько ТРВ.

Рис. 5. Схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ

Процесс автоматического регулирования давления конденсации хладагента в машинах с конденсаторами воздушного охлаждения осуществляют изменением скорости или расхода охлаждающего воздуха.

Технически его обеспечивают системой жалюзи или поворотных заслонок, использованием вентиляторов с изменяемым углом установки направляющих лопаток, применением двухскоростных электродвигателей, а также периодическим выключением вентиляторов. Изменение скорости или расхода охлаждающего воздуха приводит к изменению коэффициента теплопередачи конденсатора, а следовательно, к

изменению температуры и давления процесса конденсации.

В ряде случаев повышения температуры конденсации добиваются частичным подтоплением поверхности конденсатора жидким

хладагентом.

Приборы автоматического регулирования, помимо контроля параметров испарителя и конденсатора, поддерживают заданную температуру воздуха в охлаждаемом помещении, обеспечивают своевременное удаление инея («снеговой шубы») с поверхности испарителя, регулируют уровень масла в маслоотделителях и т.д. Работу системы регулирования сочетают с автоматической защитой, которая включает комплекс мер по безопасной эксплуатации холодильных машин и предупреждает аварийные режимы путем отключения машины.

Система автоматической защиты включает соответствующие датчики (реле защиты и устройства для преобразования импульсов от этих реле в сигнал остановки). В ряде случаев систему защиты дополняют блокировкой, которая исключает повторный пуск машины без устранения причины, вызвавшей срабатывание защиты.

В компрессорных холодильных машинах датчики системы защиты следят за уровнем максимального давления и температуры хладагента на нагнетании компрессора, минимального давления на всасывании, за давлением и температурой масла в системе смазки, за работой электродвигателя, исключающей его перегрузку или короткое замыкание. В систему, автоматической защиты может быть введена световая или звуковая сигнализация, оповещающая о достижении предельного значения контролируемой величины или приближения к опасному режиму работы машины.

3. Классификация и основные элементы

приборов автоматики

По назначению приборы автоматики можно разделить на четыре основные группы: регулирования, защиты, контроля, сигнализации.

Приборы автоматического регулирования обеспечивают включение или выключение холодильной установки и отдельных ее аппаратов, а также управляют процессами работы. В холодильных установках подвижного состава приборы регулирования осуществляют следующие функции: правильно заполняют испаритель хладагентом (терморегулирующие вентили и др.); поддерживают температуру в охлаждаемых помещениях в заданных интервалах (термостаты, дуостаты); регулируют давление в конденсаторе в заданном интервале (прессостаты); обеспечивают своевременное оттаивание инея с испарителя (прессостаты, программные реле, термостаты); открывают или прекращают подачу жидкого или парообразного хладагента (электромагнитные вентили, обратные клапаны); ограничивают поступление хладагента в компрессор из испарителя (регуляторы давления всасывания).

Приборы автоматической защиты выключают всю холодильную установку или отдельные аппараты при наступлении опасных режимов работы: при достижении предельно допустимого давления нагнетания (прессостаты); при вакууме на стороне всасывания (прессостаты); при падении давления масла в системе смазки компрессора (релеразности давлений); при низкой температуре масла в картере компрессора (термостаты) ; при высокой температуре паров хладагента, сжатых в компрессоре (реле температуры); при перегрузке электродвигателя или коротком замыкании (тепловые реле, автоматические выключатели, плавкие предохранители).

Приборы автоматического контроля осуществляют измерения, а в некоторых случаях и записи определенных параметров работы холодильной установки, например температуры в охлаждаемом помещении (термограф), расхода электроэнергии (электросчетчик), времени работы оборудования (счетчики моточасов) и др. Приборы автоматической сигнализации включают световые или звуковые сигналы при достижении заданного значения контролируемой величины или при приближении к опасному режиму работы машины.

Приборы автоматики состоят из следующих основных частей: чувствительного элемента (датчика), передающего механизма, регулирующего (рабочего) органа, устройства для настройки (задатчика). Чувствительный элемент воспринимает контролируемую величину (температуру, давление, уровень жидкости и т.п.) и преобразует ее в удобный вид энергии для дистанционной передачи. Передающий механизм соединяет чувствительный элемент с регулирующим (рабочим) органом.

Регулирующий орган действует по сигналу чувствительного элемента. В приборах двухпозиционного действия (реле) рабочий орган может занимать только два положения. Например, электрические контакты реле давления (прессостата) или реле температуры (термостата) могут быть замкнуты или разомкнуты, клапан электромагнитного вентиля - закрыт или открыт. В приборах плавного (пропорционального) действия каждому изменению регулируемой величины соответствует перемещение регулирующего органа (например, плавное перемещение клапана регулирующего вентиля при изменении тепловой нагрузки на испаритель). Устройство для настройки прибора устанавливает заданное значение регулируемой или контролируемой величины. Отклонение регулируемой величины, не вызывающее перемещение регулирующего органа, называется зоной нечувствительности, или дифференциалом прибора. Чувствительные элементы приборов давления выполняются в виде сильфонов и мембран. Сильфон представляет собой тонкостенную гофрированную трубку. Изготавливают сильфоны из латуни, бронзы, нержавеющей стали. При изменении давления в сильфоне длина его может значительно изменяться. Мембраны изготавливают в виде круглых эластичных пластин, закрепленных по периметру. Мембраны могут быть упругие (металлические) и мягкие (резиновые, пластмассовые, из прорезиненных тканей).

204 Температурные чувствительные элементы выполняют в виде биметаллических пластин и термочувствительных систем с различными наполнителями. В элементах, основанных на расширении твердых тел при нагревании, температура преобразуется в механическое перемещение (дилатометрические элементы). Перемещение происходит за счет неодинаковых коэффициентов линейного расширения у различных металлов. На рис. 3.6 а, б показаны элементы с двумя металлическими деталями 1 и 2 из разного материала, на рис. 3.6 в, г - чувствительный элемент из биметалла, т.е. из двух слоев металлов, сваренных между собой.

В элементах с тепловым расширением жидкостей используется зависимость изменения объема жидкости от температуры. Датчики, заполненные ртутью (рис. 3.7, а, б), используются для преобразования температуры в электрический сигнал без промежуточной механической системы. Датчик на рис. 3.7, а имеет релейную характеристику, на рис. 3.7, б - плавную. Применявшиеся ранее на рефрижераторных поездах ртутноконтактные датчики температуры оказались недостаточно надежными, так как из-за вибраций и толчков на ходу появлялись разрывы ртутного столба и нарушалась электрическая цепь. Кроме того, ртутно-контактные датчики рассчитаны на малую электрическую мощность сигнала.

Рис. 3.6. Дилатометрические чувствительные элементы

Рис. 3.7. Жидкостные

термочувствительные

Компрессионная холодильная машина

Хладоносители

Холодильные агенты

Процессы и способы охлаждения

Назначение холодильного оборудования

1. Назначение холодильного оборудования

Холод является самым распространенным и надежным способом консервирования, так как позволяет практически полностью сохранить все первоначальные; свойства продукта.

Под обработкой холодом понимают охлаждение и замораживание пищевых продуктов. Если в центре продукта температура равна О...+4С, продукт считается охлажденным, если же в центре продукта температура равна -8°С и ниже - замороженным.

Низкие температуры создают неблагоприятные условия для развития и размножения микроорганизмов и действия ферментов (в случае охлаждения). При замораживании вода переходит в лед, и микроорганизмы лишаются питательной среды, в результате чего 90-99 % из них погибают. Некоторые же микроорганизмы, например бактерии, только прекращают свою жизнедеятельность, но не погибают. Ферменты менее чувствительны к понижению температуры.

Процесс консервирования продуктов холодом связан с отводом тепла от продукта с помощью охлаждающей среды, в качестве которой могут быть жидкости, воздух (газы), твердая углекислота или водный лед.

Однако наряду с положительным влиянием консервирования холодом имеются и отрицательные моменты - это потеря влаги продуктом (усушка), незначительное снижение качества продукта в результате образования корочки подсыхания и возникающей пористости поверхности.

Сроки хранения охлажденных продуктов составляют от нескольких суток до нескольких месяцев. Для увеличения сроков хранения мясных, молочных, рыбных и других продуктов их завораживают. Сроки хранения замороженных продуктов составляют от нескольких месяцев до нескольких лет. Это позволяет создавать определенные запасы продуктов и обеспечивать продуктами население страны круглогодично.

2. Процессы и способы охлаждения

Охлаждение, как и нагрев, основано на теплообмене - это самопроизвольный переход тепла от тела с большей температурой к телу с меньшей температурой.

Для охлаждения используются процессы, протекающие с поглощением тепла из окружающей среды : таяние или растворение; кипение или испарение; сублимация и др.

Охлаждение бывает естественным и искусственным.

Естественным охлаждением называется теплообмен между охлаждаемым телом и окружающей средой - наружным воздухом и водой естественных водоемов. Однако при таком охлаждении температуру охлаждаемого тела можно понизить только до температуры окружающей среды. Для получения более низких температур применяют смесь льда с поваренной солью. Однако лед или смесь льда с солью воспринимают тепло охлаждаемых продуктов, изменяют свое агрегатное состояние и теряют охлаждающую способность.



К искусственному относится охлаждение «сухим льдом», а также с помощью кипящих жидких газов и термоэлектричества. Достоинством искусственного охлаждения является возможность поддержания заданного режима хранения в любое время года.

Охлаждение с помощью холодильных машин называетсямашинным охлаждением .

Под низкими температурами, как правило, понимают температуры ниже окружающей среды. В холодильном оборудовании предприятий торговли и общественного питания этот диапазон составляет от 0 до -40°С.

Низкие температуры получают в результате физических процессов, которые сопровождаются поглощением теп-

ла. К числу основных таких процессов относится:

Ø фазовый переход вещества - плавление, кипение (испарение), сублимация;

Ø адиабатическое расширение газа;

Ø дросселирование реального газа и жидкостей;

Ø термоэлектрический эффект (эффект Пельтье).

3. Холодильные агенты

Один из основных вопросов, возникающих при создании холодильных машин (далее - ХМ), - выбор холодильных агентов, которые способствовали бы надежной и экономичной работе машины в заданном температурном диапазоне.

Рабочие вещества, предназначенные для ХМ, должны отвечать следующим основным требованиям:

Обладать химической стабильностью и инертностью к основным конструкционным материалам и смазочным маслам;

Иметь допустимые значения рабочих давлений, разности и отношения давлений нагнетания и всасывания;

Не оказывать отрицательных воздействий на окружающую среду и человека;

Быть негорючими и взрывобезопасными;

Иметь высокую степень термодинамического совершенства, большую объемную холодопроизводительность;

Обладать благоприятным сочетанием теплофизических свойств, влияющих на массу и габариты теплообменной аппаратуры;

Выпускаться промышленностью и иметь относительно низкую стоимость.

Как правило, в ХМ применяют рабочие вещества, удовлетворяющие лишь наиболее важным требованиям. Кроме перечисленных, немаловажным требованием, которое предъявляется к холодильным агентам, является безопасность эксплуатации холодильного оборудования.

Рабочие вещества холодильных машин (называемые чаще рефрижераторами от английского «Refrigerant» и обозначаемые по международному стандарту ISO N°817-74 буквой «R» с добавлением индивидуального для каждого вещества цифрового обозначения), используются для осуществления обратных термодинамических циклов. Кроме чистых хладагентов все чаще находят применение их смеси, поэтому общее число хладагентов насчитывает несколько десятков.

К наиболее широко применяемым хладагентам в настоящее время относятся аммиак (хладагент R7I7) и хладоны (по старой классификации фреоны) - хладагенты R12, R22, R134a и R404A|

Несмотря на токсичность и взрывоопасность, аммиак в силу своих отличных термодинамических свойств и низкой стоимости продолжает использоваться на крупных пищевых производствах и предприятиях общественного питания, где потребность более 100 кВт. Развитие подобных систем холодоснабжения по линии внедрения холодильных машин с уменьшенной емкостью по этому хладагенту (менее 100 кг) и полной автоматизацией защиты. Однако и на относительно небольших торговых предприятиях, в том числе и в супермаркетах, уже используются малые аммиачные машины (Дания, Чехия и другие страны).

Наиболее широко на малых и средних предприятиях торговли и общественного питания применяются хладоны. Однако полной однозначности в выборе того или иного хладона в настоящее время нет. Это объясняется следующим. Еще в 1974 г. американские физики (ныне Нобелевские лауреаты) Ш. Роуленд и М. Молина обнаружили, что большинство из традиционно используемых хладонов (в том-числе R11, R12, R113, R502 и в значительно меньшей степени R22) при попадании в стратосферу активно разрушают озоновый слой Земли, задерживающий ультрафиолетовое излучение Солнца. Учитывая эту глобальную опасность, правительство СССР в 1987 г. подписало Монреальский протокол о постепенном запрете озоноразрушающих хладагентов. В соответствии с этим соглашением с 1 января 1996 г. в России запрещено использование в новом оборудовании широко применявшихся ранее хладагентов R12 и R502, а с 1999 г. полностью запрещено их производство. Хладагент R22 разрешен к применению в России до 2020 г. Полноценных заменителей этих хладонов в мире пока не найдено, однако в настоящее время считается, что наиболее вероятной заменой будут в среднетемпературном оборудовании и кондиционерах- хладагент R134а, в низкотемпературном оборудовании - хладагент R404A. Поэтому в подавляющем большинстве случаев, официально импортируемое Россией после 1996г. торгово-технологическое холодильное оборудование имеет заправку одним из четырех перечисленных выше хладагентов: аммиаком (R717) или хладонами R22, R134а и R404A.

Ниже приведены основные свойства этих хладагентов.

1. Аммиак. Формула NH 3 . Торговое название хладагента R717. Бесцветный газ с характерным резким запахом. Токсичен, сильно раздражает слизистые оболочки глаз и дыхательных путей, ПДК 20 мг/м 3 . Пожаро- и взрывоопасен. Класс опасности 1. Хорошо растворим в воде. Химически инертен по отношению к черным металлам и бронзе, однако в присутствии влаги реагирует с медью и медно-цинковыми сплавами, а также быстро ухудшает качество смазочных масел. На порядок дешевле хладонов. Давление конденсации при +30°С равно 1,168 МПа; температура кипения при атмосферном давлении -33,34°С, теплота парообразования 1369,7 кДж/кг.

2. R22 - дифторхлорметан. Формула CFCIH. Бесцветный газ со слабым запахом трихлорметана. Нетоксичен, ПДК 3000 мг/м 3 . Негорюч. Класс опасности 4. Плохо растворим в воде, поэтому холодильная система требует тщательной осушки. Хороший растворитель органики и резины, инертен к большинству металлов. Давление конденсации при +30°С равно 1,191 МПа; температура кипения при атмосферном давлении -40,81°С, теплота парообразования 233,2 кДж/кг.

3. R134a. 1,1,1,2-тетрафторэтан. Формула CFCFH. Бесцветный газ. ПДК в настоящее время неустановлен. Трудногорюч. Класс опасности 4. Инертен к большинству металлов. Давление конденсации при +30°С равно 0,773 МПа; температура кипения при атмосферном давлении - 26,5°С, теплота парообразования 216,5 кДж/кг.

4. R404A (иногда обозначается НР62) - неазеотропная смесь чистых хладагентов R125/I43a/134a в пропорции 44:52:4 по массовым долям, поэтому кипение в испарителе происходит при переменной температуре (изменение температуры по длине аппарата около 5°С). Температура кипения при атмосферном давлении -4б,5°С, теплота парообразования близка к таковой для хладона R22. Высокое давление конденсации (≈ 2-2,8 МПа) предъявляет высокие требования к качеству монтажных работ.

Различают естественные и искусственные холодильные агенты. К естественным хладагентам относятся: аммиак (R717), воздух (R729), вода (R718), углекислота (R744) и др., к искусственным - хладоны (смеси различных фреонов).

Фреоны - углеводороды (СН 4 , С 2 Н 6 , С 3 Н 8 и С 4 Н 10), в которых водород полностью или частично заменен фтором и хлором (в отдельных случаях бромом). Международным стандартом принято краткое обозначение всех холодильных агентов, состоящее из символа R (Refrigerant - хладагент) и определяющей цифры. Например, фреон-12 имеет обозначение R12. Поэтому насегодня все фреоны принято обозначать в международной символике, отсюда и их название - хладоны.

По термодинамическим свойствам наилучшим природным холодильным агентом считается аммиак. Поэтому в настоящее время на крупных холодильных установках с умеренно низкими температурами (-15...-25С) наиболее распространен аммиак.

По степени озоноразрушающей активности хладагенты

делят на две группы:

¨ хладагенты с высокой озоноразрушающей активностью (ODP1,0);

¨ хладагенты с низкой озоноразрушающей активностью (ODP <0,1).

К первой группе относятся хладоны R11, R12, R2З, R11З, R114, R115, R500, R501 и др.

Ко второй группе относятся менее озонобезопасные хладоны R21, R22, R23, R30, R40, R123, R124, R140 а, R160 и др. Молекулы каждого из названных хладонов содержат атом водорода и поэтому при гидролизе и пиролизе молекул хладонов в первую очередь образуется соляная кислота НС1, и в редких случаях при определенных условиях может выделиться несколько молекул свободного хлора. Этим и объясняется их низкая озонобезопасность.

Хладоны, не содержащие атомов хлора, являются полностью озонобезопасными.

4. Хладоносители

В холодильной технике хладоносители используют в тех случаях, когда по различным причинам применять систему непосредственного охлаждения камер нецелесообразно. Такими причинами, как правило, являются: значительная удаленность холодильных камер от машинного отделения, низкая температура кипения хладона в испарителе (воздухоохладителе), охлаждение одним холодильным агрегатом нескольких камер с большим различием температур в камерах, воздействие на систему охлаждения внешних сил (рефрижераторные суда).

Хладоносителем называют вещество, которое отбирает теплоту из одной части холодильной установки и отдает его другой, не меняя при этом своего агрегатного состояния. Вещество, выбранное в качестве хладоносителя, должно иметь низкую температуру замерзания, малые вязкость и плотность, высокие теплопроводность и теплоемкость, быть безопасным и безвредным, химически стойким, инертным по отношению к металлам, а также недефицитным и недорогим. Почти всею этим требованиям отвечает вода. Однако сравнительно высокая температура замерзания воды ограничивает область ее применения.

В качестве хладоносителей применяют растворы хлористого натрия, хлористого магния или хлористого кальция, которые называют рассолами, а также растворы этиленгликоля (антифриз), RЗО, дихлорметан (СН 2 С1 2) и др.

Недостатком рассолов является их коррозионное воздействие на металлы, которое резко усиливается в открытых системах из-за контакта воздуха (кислорода) с рассолом. Для уменьшения коррозии к рассолам добавляют вещества, которые называют пассиваторами. Это хромат натрия с едким натром.

Этиленгликоль. Для получения температур ниже -55°С использовать рассолы нельзя. В этом случае в качестве промежуточных хладоносителей используют водный раствор этиленгликоля (антифриз). Чистый этиленгликоль С 2 Н 4 (ОН) 2 имеет температуру замерзания всего -17,5°С. Поэтому применяют водные растворы этиленгликоля, температуры замерзания которых зависят от массовой доли этиленгликоля. Растворы этиленгликоля применяют в диапазоне температур кипения от -40 до -60°С. Этиленгликоль оказывает значительное коррозионное воздействие на металлы, поэтому для уменьшения такого отрицательного воздействия в раствор добавляют вещества, называемые пассиваторами.

R30 и спирты. Благодаря низкой температуре замерзания (-96°С) и малой вязкости широкое применение в качестве хладоносителя получил хладон-30. Его применяют в диапазоне температур от -40 до - 90°С. Спирты имеют более низкие температуры замерзания: этиловый спирт (-117°С), пропиловый спирт (-127С). Метиловый спирт (-97,8°С) ядовит и применять его в качестве хладоносителя не рекомендуется. Учитывая некоторые отрицательные качества рассолов, ученые постоянно ведут поиски новых видов теплоносителей.

5. Компрессионная холодильная машина

Из всех способов охлаждения наибольшее применение получило охлаждение с помощью холодильных машин (машинное охлаждение), при котором используется принцип кипящих жидких газов. Работа холодильной машины полностью автоматизирована, что дает следующие преимущества: удобство в эксплуатации, безопасность работы обслуживающего персонала, возможность соблюдения требуемого температурного режима для различных видов продуктов, а также режима экономии.

Холодильная машина - это кольцевая герметически замкнутая система, по которой циркулирует одно и то же количество рабочего вещества, называемого холодильным агентом. Хладагент в машине лишь меняет свое физическое состояние.

В торговом машиностроении применяются холодильные машины двух видов: компрессионная и абсорбционная, в которых используются различные способы обеспечения циркуляции хладагента. В компрессионной холодильной машине для циркуляции хладагента затрачивается механическая энергия, а в абсорбционной - тепловая. Наибольшее распространение получила компрессионная холодильная машина.

Компрессионная холодильная машина состоит из четырех основных частей: испарителя, компрессора, конденсатора и терморегулирующего вентиля (ТРВ).

Охлаждение может быть естественным или принудительным, как это показано на рис. 28.1.

Компрессор холодильной машины предназначен для осуществления следующих процессов: всасывания паров хладагента из испарителя, адиабатического их сжатия и нагнетания в конденсатор. На рис. 31.2 – 31.6 представлены виды компрессоров холодильной машины.

Всасывание компрессором паров из испарителя. Испарители (воздухоохладители), расположенные в охлаждаемой среде (камере), при работающей холодильной установке имеют наинизшую температуру по сравнению с другими телами, находящимися в камере. В трубках испарителя (воздухоохладителя) находится хладагент, температура кипения которого зависит от давления. Образующиеся пары в испарителе постоянно отводятся компрессором, что обеспечивает постоянное давление и соответственно постоянную температуру кипения хладагента.

Если же тепловая нагрузка на испаритель резко возрастает (при внесении продуктов в камеру), то давление в испарителе возрастает. Соответственно возрастет и температура кипения, а тепловая нагрузка на испаритель снизится из-за уменьшения разности температур между воздухом в холодильной камере и поверхностью испарителя. Возрастание давления в испарителе приведет к увеличению плотности паров и повышению производительности компрессора. Давление и температура кипения хладагента в испарителе начнут понижаться. Если же теплопритоки на испаритель сильно уменьшатся (произошло полное охлаждение продуктов), то и количество пара в испарителе будет очень Незначительным, т.е. в испарителе практически не будет шаров, а, следовательно, компрессору нечего отводить из испарителя и он автоматически выключается.

Итак, работа компрессора по всасыванию паров обеспечивает определенное давление и соответственно температуру кипения хладагента в испарителе. Компрессор, забитая пары из испарителя, фактически выводит тепло из камеры.

Адиабатическое сжатие паров в компрессоре необходимо для повышения их температуры. Температура пара в конце сжатия должна быть обязательно выше температуры охлаждающей среды в конденсаторе для того, чтобы пары затем можно было охладить. При охлаждении пар переходит в жидкость.

Нагнетание паров. Если давление (и температура) при сжатии будут ниже, чем температура охлаждающей среды, то такие пары, поступая в конденсатор, охлаждаться не будут. Давление в конденсаторе снижаться не будет. Компрессор, выталкивая из цилиндра очередной объем пара, должен преодолеть большое сопротивление в конденсаторе, а для этого пары необходимо сжимать до такого давления, которое больше давления в конденсаторе. Повышение давления приводит к соответствующему росту температуры. Давление растет до тех пор, пока температура пара не превысит температуру охлаждающей среды.

Процессы холодильного цикла связаны с различными видами теплообмена: в испарителе хладагент отбирает тепло от воздуха охлаждаемой камеры или от хладоносителя, в конденсаторе тепло передается охлаждающей среде (воде или воздуху). Испаритель и конденсатор - основные тепло-обменные аппараты.

Испаритель (рис. 31.6) - это аппарат, в котором жидкий хладагент кипит при низком давлении, отводя тепло от охлаждаемого объекта (продуктов). Чем ниже давление, поддерживаемое в испарителе, тем ниже температура кипящее жидкости. Температуру кипения, как правило, поддержи-вают на 10-15°С ниже температуры воздуха в камере. Температура воздуха в камере зависит от вида охлаждаемого продукта. Испаритель может быть расположен непосредственно в охлаждаемом объеме (камере, шкафе), как показано на рис. 28.1, или же находится за его пределами. В соответствии с этим по назначению различают испарители для непосредственного охлаждения среды и испарителя для охлаждения промежуточного хладоносителя (вода, рассол, воздух, этиленгликоль и др.). Конструкция испарителя зависит от вида охлаждающей среды, необходимой холодопроизводительности, свойств самого хладагента и от температурного напора между средами. На рис. 31.7 представлен процесс изменение температуры кипения холодильного агента в испарителе во времени.

Конденсатор - аппарат, предназначенный для осуществления теплообмена между хладагентом и охлаждающей средой. В процессе теплообмена от хладагента отводится энергия, которая передается охлаждающей среде, а сам хладагент охлаждается и конденсируется. Охлаждающая же среда нагревается. В зависимости от вида охлаждающей среды различают конденсаторы с воздушным и водяным охлаждением.

Терморегулирующий вентиль (ТРВ) обеспечивает заполнение испарителя жидким хладагентом в оптимальных пределах. Переполнение испарителя может привести к его попаданию в компрессор и к поломке, а его малое заполнение резко снижает эффективность работы испарителя.

Степень заполнения испарителя зависит от температуры перегрева пара на выходе из испарителя. ТРВ производит сравнение температуры пара на выходе из испарителя с заданной и в зависимости от величины расхождения увеличивает или уменьшает поток жидкого хладагента в испаритель.

Кроме вышеперечисленных основных частей холодильная машина оснащена другими частями: приборами автоматики, пускозащитной электроаппаратурой, теплообменниками, фильтром-осушителем, ресивером.

6. Приборы автоматики холодильных машин

Автоматизацией называется комплекс технических мероприятий, позволяющих полностью или частично исключить участие человека в управлении процессом.

Охлаждаемый объем рассматривается как объект, в котором должен поддерживаться постоянный температурный режим. Поскольку время суток и время года влияют на температуру окружающего воздуха, а температура воздуха в камере должна быть одной и той же, то количество тепла, поступающего в камеру через ограждения (стены, пол, потолок), постоянно изменяется. Повышение температуры воздуха в камере уменьшает сроки хранения продуктов, а значительное ее снижение приводит не только к перерасходу электроэнергии, но и к замораживанию продуктов. Поэтому автоматизация установки должна предусматривать изменение режима работы испарителя в зависимости от тепловой нагрузки. Приборы автоматики должны обеспечивать не только эффективную, но и надежную работу всех элементов холодильной машины.

Автоматизация холодильных машин осуществляется по трем основным направлениям: автоматизация процессов регулирования с помощью систем; автоматизация защиты; автоматизация сигнализации.

Назначение

Установки пропанового охлаждения природного газа предназначены для одновременного обеспечения требуемых параметров точки росы по воде и углеводородам посредством конденсации водной и углеводородной фракции (УВ) при низких температурах (до минус 30 0 С). Источником холода является внешний пропановый холодильный цикл.

Основное преимущество таких установок – низкие потери давления сырьевого потока (дросселирование потока природного газа не требуется) и возможность извлечения продукционной фракции С3+.

Для предотвращения гидратообразования используется впрыск ингибитора: этиленгликоля (для температур не ниже минус 35 0 С) и метанола (для температур вплоть до минус 60 0 С).

Основные преимущества

Надежность

  • Непрерывный процесс, основанный на конденсации воды и УВ фракций в присутствии ингибитора гидратообразования.
  • Отсутствие циклических колебаний.
  • Кожухотрубный теплообменник газ-газ с низким температурным напором.
  • Сервис-фактор мотора холодильного компрессора 110%.
  • Автоматическая система поддержания давления в ресивере при эксплуатации в холодном климате.
  • Электрообогрев сборника ингибитора в трехфазном сепараторе.

Эффективность

  • Холодный сепаратор с эффективными коалесцирующими насадками и значительным временем пребывания.
  • Теплообменник газ-пропан (чиллер) с погруженным трубным пучком.

Возможные опции

  • Экономайзер холодильного цикла (стандарт для систем свыше 150 кВт и температурой испарения ниже минус 10 0 С).
  • Входной сепаратор.
  • Теплообменник газ-жидкость (позволяет снизить потребляемую мощность компрессора).

Технологическая схема

Влагонасыщенный поток природного газа подается во входной сепаратор (1), в котором из потока удаляются свободная вода и УВ фракции. Газовая фракция направляется в теплообменник газ-газ (2) для предварительного охлаждения потоком сухого отбензиненного газа из холодного сепаратора. Для предотвращения гидратообразования в теплообменнике предусмотрены форсуночные устройства для впрыска ингибитора (метанол или этиленгликоль).

Рис. 3 Принципиальная схема пропановой холодильной установки

После предварительного охлаждения в теплообменнике газ-газ поток подается в теплообменник газ-пропан (чиллер) (4), в котором происходит понижение температуры потока до заданного значения посредством теплообмена с потоком кипящего пропана. Сырьевой поток находится в трубном пучке, который в свою очередь погружен в объем хладагента.

Образовавшаяся в результате охлаждения парожидкостная смесь поступает на разделение в низкотемпературный трехфазный сепаратор (5), где разделяется на потоки отбензиненного газа, конденсата и насыщенного водой ингибитора гидратообразования.

Сухой отбензиненный газ (СОГ) подается противотоком в теплообменник газ-газ (2) и далее отводится за пределы установки.

Жидкостные фракции отводятся независимыми автоматическими конроллерами уровня в соответствующие линии.

Статьи по теме

Газопереработка - это просто

Одной из наших основных задач является борьба с мифом о том, что газопереработка это сложно, долго и дорого. Удивительно, но на проекты, которые в США реализуются за 10 месяцев, на территории СНГ уходит до трех лет. Установки, занимающие в США 5000 м2, на территории СНГ с трудом умещаются на 20 000 м2. Проекты, окупающиеся в США за 3-5 лет, даже при существенно более низкой стоимости реализации продукта, на территории России и Казахстана не окупаются никогда.

Рассказать друзьям