Определить максимальное напряжение в сечении бруса диаметр. Максимальные напряжения при кручении

💖 Нравится? Поделись с друзьями ссылкой

При растяжении (сжатин) бруса в его поперечных сечениях возникают только нормальные напряжения. Равнодействующая соответствующих элементарных сил о, dA - продольная сила N - может быть найдена с помощью метода сечений. Для того чтобы иметь возможность определить нормальные напряжения при известном значении продольной силы, необходимо установить закон нх распределения по поперечному сечению бруса.

Эта задача решается на основе протезы плоских сечений (гипотезы Я. Бернулли), которая гласит:

сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к ося и при деформации.

При растяжении бруса (изготовленного, например, для большей наглядности опыта из резины), на поверхности которого нанесена система продольнь1х и поперечных рисок (рис. 2.7,а), можно убедиться, что риски остаются прямолинейными и взаимно перпендикулярными, изменяются лишь

где А - площадь поперечного сечения бруса. Опуская индекс z, окончательно получаем

Для нормальных напряжений принимают то же правило знаков, что и для продольных сил, т. е. при растяжении считают напряженна положительными.

Фактически распределение напряжений в сечениях бруса, примыкающих к месту приложения внешних сил, зависит от способа приложения нагрузки и может быть неравномерным. Экспериментальные и теоретические исследования показывают, что это нарушение равномерности распределения напряжений носит местный характер. В сечениях бруса, отстоящих от места нагружения на расстоянии, примерно равном наибольшему из поперечных размеров бруса, распределение напряжений можно считать практически равномерным (рис. 2.9).

Рассмотренное положение является частным случаем принципа Сен-Венана, который можно сформулировать следующим образом:

распределение напряжений существенно зависит от способа приложения внешних сил лишь вблизи места нагружения.

В частях, достаточно удаленных от места приложения сил, распределение напряжений практически зависит только от статического эквивалента этих сил, а не от способа их приложения.

Таким образом, применяя принцип Сен-Венана и отвлекаясь от вопроса о местных напряжениях, имеем возможность (как в этой, так и в последующих главах курса) не интересоваться конкретными способами приложения внешних сил.

В местах резкого изменения формы и размеров поперечного сечения бруса также возникают местные напряжения. Это явление называют концентрацией напряжений, которую в этой главе учитывать не будем.

В тех случаях, когда нормальные напряжения в различных поперечных сечениях бруса неодинаковы, целесообразно показывать закон их изменения по длине бруса в виде графика - эпюры нормальных напряжений.

П ри мер 2.3. Для бруса со ступенчато-переменным поперечным сечением (рис. 2.10,а) построить эпюры продольных сил и нормальных напряжений.

Решение. Разбиваем брус на участки, начиная от свободного гонца. Границами участков являются места приложения внешних сил и изменения размеров поперечного сечения, т. е. брус имеет пять участков. При построении только эпюры N следовало бы разбить брус лишь на три участка.

Применяя метод сечений, определяем продольные силы в поперечных сечениях бруса и строим соответствующую эпюру (рис. 2.10,6). Построение эпюры И принципиально ничем не отличается от рассмотренного в примере 2.1, поэтому подробности этого построения опускаем.

Нормальные напряжения вычислим по формуле (2.1), подставляя значения сил в ньютонах, а площадей - в квадратных метрах.

В пределах каждого из участков напряжения постоянны, т. е. эпюра на данном участке - прямая, параллельная оси абсцисс (рис. 2.10, в). Для расчетов на прочность интерес представляют в первую очередь те сечения, в которых возникают наибольшие напряжения. Существенно, что в рассмотренном случае они не совпадают с теми сечениями, где продольные силы максимальны.

В тех случаях, когда сечение бруса по всей длине постоянно, эпюра а подобна эпюре N и отличается от нее только масштабом, поэтому, естественно, имеет смысл построение лишь одной из указанных эпюр.

Продольная сила N, возникающая в поперечном сечении бруса, представляет собой равнодействующую внутренних нормальных сил, распределенных по площади поперечного сечения, и связана с возникающими в этом сечении нормальными напряжениями зависимостью (4.1):

здесь - нормальное напряжение в произвольной точке поперечного сечения, принадлежащей элементарной площадке - площадь поперечного сечения бруса.

Произведение представляет собой элементарную внутреннюю силу, приходящуюся на площадку dF.

Величину продольной силы N в каждом частном случае легко можно определить при помощи метода сечений, как показано в предыдущем параграфе. Для нахождения же величин напряжений а в каждой точке поперечного сечения бруса надо знать закон их распределения по этому сечению.

Закон распределения нормальных напряжений в поперечном сечении бруса изображается обычно графиком, показывающим изменение их по высоте или ширине поперечного сечения. Такой график называют эпюрой нормальных напряжений (эпюрой а).

Выражение (1.2) может быть удовлетворено при бесконечно большом числе видов эпюр напряжений а (например, при эпюрах а, изображенных на рис. 4.2). Поэтому для выяснения закона распределения нормальных напряжений в поперечных сечениях бруса необходимо провести эксперимент.

Проведем на боковой поверхности бруса до его нагружения линии, перпендикулярные к оси бруса (рис. 5.2). Каждую такую линию можно рассматривать как след плоскости поперечного сечения бруса. При нагружении бруса осевой силой Р эти линии, как показывает опыт, остаются прямыми и параллельными между собой (их положения после нагружения бруса показаны на рис. 5.2 штриховыми линиями). Это позволяет считать, что поперечные сечения бруса, плоские до его нагружения, остаются плоскими и при действии нагрузки. Такой опыт подтверждает гипотезу плоских сечений (гипотезу Бернулли), сформулированную в конце § 6.1.

Представим мысленно брус состоящим из бесчисленного множества волокон, параллельных его оси.

Два любых поперечных сечения при растяжении бруса остаются плоскими и параллельными между собой, но удаляются друг от друга на некоторую величину; на такую же величину удлиняется каждое волокно. А так как одинаковым удлинениям соответствуют одинаковые напряжения, то и напряжения в поперечных сечениях всех волокон (а следовательно, и во всех точках поперечного сечения бруса) равны между собой.

Это позволяет в выражении (1.2) вынести величину а за знак интеграла. Таким образом,

Итак, в поперечных сечениях бруса при центральном, растяжении или сжатии возникают равномерно распределенные нормальные напряжения, равные отношению продольной силы к площади поперечного сечения.

При наличии ослаблений некоторых сечений бруса (например, отверстиями для заклепок), определяя напряжения в этих сечениях, следует учитывать фактическую площадь ослабленного сечения равную полной площади уменьшенной на величину площади ослабления

Для наглядного изображения изменения нормальных напряжений в поперечных сечениях стержня (по его длине) строится эпюра нормальных напряжений. Осью этой эпюры является отрезок прямой, равный длине стержня и параллельный его оси. При стержне постоянного сечения эпюра нормальных напряжений имеет такой же вид, как и эпюра продольных сил (она отличается от нее лишь принятым масштабом). При стержне же переменного сечения вид этих двух эпюр различен; в частности, для стержня со ступенчатым законом изменения поперечных сечений эпюра нормальных напряжений имеет скачки не только в сечениях, в которых приложены сосредоточенные осевые нагрузки (где имеет скачки эпюра продольных сил), но и в местах изменения размеров поперечных сечений. Построение эпюры распределения нормальных напряжений по длине стержня рассмотрено в примере 1.2.

Рассмотрим теперь напряжения в наклонных сечениях бруса.

Обозначим а угол между наклонным сечением и поперечным сечением (рис. 6.2, а). Угол а условимся считать положительным, когда поперечное сечение для совмещения с наклонным сечением надо повернуть на этот угол против часовой стрелки.

Как уже известно, удлинения всех волокон, параллельных оси бруса, при его растяжении или сжатии одинаковы. Это позволяет предполагать, что напряжения р во всех точках наклонного (так же как и поперечного) сечения одинаковы.

Рассмотрим нижнюю часть бруса, отсеченную сечением (рис. 6.2, б). Из условий ее равновесия следует, что напряжения параллельны оси бруса и направлены в сторону, противоположную силе Р, а внутренняя сила действующая в сечении равна Р. Здесь - площадь наклонного сечения равная (где - площадь поперечного сечения бруса).

Следовательно,

где - нормальные напряжения в поперечных сечениях бруса.

Разложим напряжение на два составляющих напряжения: нормальное перпендикулярное к плоскости сечения и касательное та, параллельное этой плоскости (рис. 6.2, в).

Значения и та получим из выражений

Нормальное напряжение считается обычно положительным при растяжении и отрицательным при сжатии. Касательное напряжение положительно, если изображающий его вектор стремится вращать тело относительно любой точки С, лежащей на внутренней нормали к сечению, по часовой стрелке. На рис. 6.2, в показано положительное касательное напряжение та, а на рис. 6.2, г - отрицательное.

Из формулы (6.2) следует, что нормальные напряжения имеют значения от (при до нуля (при а ). Таким образом, наибольшие (по абсолютной величине) нормальные напряжения возникают в поперечных сечениях бруса. Поэтому расчет прочности растянутого или сжатого бруса производится по нормальным напряжениям в его поперечных сечениях.

Pacчет бруса круглого поперечного сечения на прочность и жесткость при кручении

Pacчет бруса круглого поперечного сечения на прочность и жесткость при кручении

Целью расчетов на прочность и жесткость при кручении является определение таких размеров поперечного сечения бруса, при которых напряжения и перемещения не будут превышать заданных величин, допускаемых условиями эксплуатации. Условие прочности по допускаемым касательным напряжениям в общем случае записывается в виде Данное условие означает, что наибольшие касательные напряжения, возникающие в скручиваемом брусе, не должны превышать соответствующих допускаемых напряжений для материала. Допускаемое напряжение при кручении зависит от 0 ─ напряжения, соответствующего опасному состоянию материала, и принятого коэффициента запаса прочности n: ─ предел текучести, nт- коэффициент запаса прочности для пластичного материала; ─ предел прочности, nв- коэффициент запаса прочности для хрупкого материала. В связи с тем, что значения в получить в экспериментах на кручение труднее, чем при растяжении (сжатии), то, чаще всего, допускаемые напряжения на кручение принимают в зависимости от допускаемых напряжений на растяжение для того же материала. Так для стали [для чугуна. При расчете скручиваемых брусьев на прочность возможны три вида задач, различающихся формой использования условий прочности: 1) проверка напряжений (проверочный расчет); 2) подбор сечения (проектный расчет); 3) определение допускаемой нагрузки. 1. При проверке напряжений по заданным нагрузкам и размерам бруса определяются наибольшие возникающие в нем касательные напряжения и сравниваются с заданными по формуле (2.16). Если условие прочности не выполняется, то необходимо либо увеличить размеры поперечного сечения, либо уменьшить нагрузку, действующую на брус, либо применить материал более высокой прочности. 2. При подборе сечения по заданной нагрузке и заданной величине допускаемого напряжения из условия прочности (2.16) определяется величина полярного момента сопротивления поперечного сечения бруса По величине полярного момента сопротивления находят диаметры сплошного круглого или кольцевого сечения бруса. 3. При определении допускаемой нагрузки по заданному допускаемому напряжению и полярному моменту сопротивления WP предварительно на основе (3.16) определяется величина допускаемого крутящего момента MK а затем с помощью эпюры крутящих моментов устанавливается связь между K M и внешними скручивающими моментами. Расчет бруса на прочность не исключает возможности возникновения деформаций, недопустимых при его эксплуатации. Большие углы закручивания бруса весьма опасны, так как могут приводить к нарушению точности обработки деталей, если этот брус является конструктивным элементом обрабатывающего станка, либо могут возникнуть крутильные колебания, если брус передает переменные по времени скручивающие моменты, поэтому брус необходимо рассчитывать также на жесткость. Условие жесткости записывается в следующем виде: где ─ наибольший относительный угол закручивания бруса, определяемый из выражения (2.10) или (2.11). Тогда условие жесткости для вала примет вид Величина допускаемого относительного угла закручивания определяется нормами и для различных элементов конструкций и разных видов нагрузок изменяется от 0,15° до 2° на 1 м длины бруса. Как в условии прочности, так и в условии жесткости при определении max или max  будем использовать геометрические характеристики: WP ─ полярный момент сопротивления и IP ─ полярный момент инерции. Очевидно, эти характеристики будут различными для круглого сплошного и кольцевого поперечных сечений при одинаковой площади этих сечений. Путем конкретных расчетов можно убедиться, что полярные моменты инерции и момент сопротивления для кольцевого сечения значительно больше, чем для оплошного круглого сечения, так как кольцевое сечение не имеет площадок, близко расположенных к центру. Поэтому брус кольцевого сечения при кручении является более экономичным, чем брус сплошного круглого сечения, т. е. требует меньшего расхода материала. Однако изготовление такого бруса сложнее, а значит, и дороже, и это обстоятельство также необходимо учитывать при проектировании брусьев, работающих при кручении. Методику расчета бруса на прочность и жесткость при кручении, а также рассуждения об экономичности, проиллюстрируем на примере. Пример 2.2 Сравнить веса двух валов, поперечные размеры которых подобрать для одного и того же крутящего момента MK 600 Нм при одинаковых допускаемых напряжениях 10 Rи 13 Растяжение вдоль волокон р] 7 Rp 10 Сжатие и смятие вдоль волокон [см] 10 Rc , Rcм 13 Смятие поперек волокон (на длине не менее10 см) [см]90 2,5 Rcм 90 3 Скалывание вдоль волокон при изгибе [и] 2 Rcк 2,4 Скалывание вдоль волокон при врубках 1 Rcк 1,2 – 2,4 Скалывание во врубках поперек волокон

Рассказать друзьям