Схема электронного зажигания 3. Первый вариант электронной схемы зажигания моторов "Вихрь"

💖 Нравится? Поделись с друзьями ссылкой

Собираем простое зарядное для Литий-ионных аккумуляторов, практически из хлама.


Накопилось у меня большое количество аккумуляторов от ноутбучных аккумуляторов, формата 18650. Обдумывая как их заряжать, я решил не заморачиваться с китайскими модулями, да и закончились они у меня к тому времени. Решил собрать воедино две схемы. Датчик тока и плата BMS с аккумулятора мобильного телефона. Проверено на практике. Хоть и схема примитивная, но она работает и успешно, ни одного аккумулятора не пострадало.

Схема зарядного устройства

Материалы и инструменты

  • шнур USB;
  • крокодильчики;
  • плата защиты BMS;
  • пластиковое яйцо от киндера;
  • два светодиода разного цвета;
  • транзистор кт361;
  • резисторы на 470 и 22 ома;
  • двухватный резистор 2.2 ома;
  • один диод IN4148;
  • инструменты.

Изготовление зарядного устройства

Шнур USB разбираем и снимаем разъем. У меня это от какого-то аипада.


К крокодилам припаиваем провода.


Глубокую часть пластикового киндера утяжеляем, я залил гайку М6 термоклеем.


Спаиваем нашу простую схемку. Все сделано навесным монтажом и распаяно на плате BMS. Светодиод я применил сдвоенный, но можно два одноцветных. Транзистор выпаял из старой советской радио-аппаратуры.


Провода продеваем в отверстие второй, мелкой, половинке пластикового киндера. Припаиваем схему.


Все компактно запихиваем в пластиковое яйцо. Для светодиода делаем отверстие.


Подключаем к USB порту пк или китайской зарядке, у них тока все равно мало.
Во время зарядки горит оранжевым цвет. Т.е. горят оба светодиода.

Когда заряд окончен, горит зеленый, тот который подключен через диод IN4148.
Можно проверить схему, отключив от аккумулятора, загорится светодиод зеленого цвета, свидетельствующий об окончании заряда.

Вы сможете ознакомиться со схемой зарядного устройства, которая отлично подойдет для литиевых Li-Ion аккумуляторов.

Сначала его автор хотел представить простой вариант на микросхеме lm317, но в этом случае зарядку нужно питать от более высокого напряжения, чем 5 вольт. Причина в том, что разница между входным и выходным напряжениями микросхемы lm317 должна быть не менее 2 Вольт. Напряжение заряженного литий-ионного аккумулятора составляет около 4,2 Вольт. Следовательно, разница напряжений меньше 1 вольта. А это это значит, что можно придумать другое решение.

На АлиЭкспресс можно купить специализированную плату для зарядки литиевых аккумуляторов, которая стоит около доллара. Да, это так, но зачем покупать то, что можно сделать за пару минут. Тем более нужно месяц пока заказ будет у вас. Но если решили приобрести готовый, чтобы сразу пользоваться им, купите в этом китайском магазине . В поиске по магазину впишите: TP4056 1A

Самая простая схема

Сегодня рассмотрим варианты UDB-зарядного устройства для литиевых аккумуляторов, которое сможет повторить каждый. Схема самая самая простая, которую можно только придумать.

Решение


Это гибридная схема, где есть стабилизация напряжения и ограничение тока заряда аккумулятора.

Описание работы зарядки

Стабилизация напряжения построена на базе довольно популярной микросхемы регулируемого стабилитрона tl431. Транзистор в качестве усилительного элемента. Ток заряда задается резистором R1 и зависит только от параметров заряжаемого аккумулятора. Этот резистор советуется с мощностью 1 ватт. А все остальные резисторы 0,25 или 0,125 ватт.

Как мы знаем, напряжение одной банки полностью заряженного литий-ионного аккумулятора составляет около 4,2 Вольт. Следовательно, на выходе зарядного устройства мы должны установить именно это напряжение, которое задается подбором резисторов R2 и R3. Существует очень много онлайн программ по расчету напряжения стабилизации микросхемы tl431.
Для наиболее точной настройки выходного напряжения советуется резистор R2 заменить на многооборотное сопротивление около 10 килоом. Кстати, возможно и такое решение. Светодиод у нас в роли индикатора заряда, подойдет практически любой светодиод, цвет на ваш вкус.
Вся настройка сводится к установке на выходе напряжения 4,2 вольта.
Несколько слов о стабилитроне tl431. Это очень популярная микросхемах,не путайте с транзисторами в аналогичном корпусе. Эта микросхема встречается практически в любом импульсном блоке питания, например компьютернаом, где микросхема чаще всего стоит в обвязке.
Силовой транзистор не критичен, подойдет любой транзистор обратной проводимости средней или высокой мощности, например из советских подойдут КТ819, КТ805. Из менее мощных КТ815, КТ817 и любые другие транзисторы с аналогичными параметрами.

Для каких аккумуляторов подходит устройство?

Схема предназначена для зарядки только одной банки литиевого аккумулятора. Можно заряжать акб стандарта 18 650 и иные аккумуляторы, только нужно выставить соответствующее напряжения на выходе из зарядника.
Если вдруг по каким-то причинам схема не заработает, то проверьте наличие напряжения на управляющем выводе микросхемы. Оно должна быть не менее 2,5 Вольт. Это минимальное рабочее напряжение для внешнего источника опорного напряжения микросхемы. Хотя встречаются варианты исполнения, где минимальное рабочее напряжение составляет 3 Вольта.
Целесообразно также построить небольшой тестовый стенд для указанной микросхемы, чтобы проверить ее на работоспособность перед пайкой. А после сборки тщательно проверяем монтаж.

В ещё одной публикации материал об улучшении .

Особенности зарядки литиевых аккумуляторов и зарядные устройства для них

Современный человек пользуется множеством электронных гаджетов. Это ноутбук, мобильный телефон, планшет, фотоаппарат и многие другие. Большинство этих устройств работают от литиевых аккумуляторов. Ведь мы ценим их именно за то, что это мобильные устройства. Однако за портативность приходится расплачиваться тем, что нужно постоянно заряжать аккумуляторы. Для этого вам потребуется зарядное устройство для литиевых аккумуляторов. В большинстве случаев зарядные устройства поставляются в комплекте с самим устройством. Этот тот же адаптер питания ноутбука или телефона. В идеале, конечно, для зарядки должно использоваться именно штатная зарядка. Но что делать, если она потеряна или вышла из строя. Нужно подобрать подходящее зарядное устройство. Что при этом учесть, обсудим в этой статье.

В общем случае зарядное устройство для должно иметь на выходе напряжение 5 вольт и ток, величина которого соответствует (0,5─1)*Сн. Сн – это номинальная ёмкость аккумулятора. К примеру, для литиевого элемента ёмкостью 2200 мАч, зарядка должна выдавать ток от 1,1 ампера.

Большинство зарядных устройств солидных производителей проводят зарядку Li аккумуляторов в несколько стадий. Первый этап идёт при постоянной величине тока 0,2─1 С и напряжении 4,1─4,2 В (здесь имеется в виду напряжение на 1 элемент или банку). Эта стадия продолжается примерно 40─50 минут. Второй этап проводится при постоянном напряжении. Есть устройства, которые для ускорения процесса зарядки, используют импульсный режим. Для литий─ионных систем с графитовой системой необходимо ограничивать напряжения значением 4,1 вольта на один элемент.

Если использовать напряжение выше 4,1 вольта, то можно увеличить энергетическую плотность аккумулятора. Но при этом начинаются окислительные реакции, которые сокращают срок службы батареи. В более поздних моделях эта проблема была устранена добавками. И на них напряжение в процессе зарядки можно увеличивать до 4,2 вольта с отклонением 0,05 на один элемент.

Если говорить о литиевых аккумуляторах промышленного назначения и для военной сферы, то для них зарядные устройства поддерживают напряжение 3,9 вольта. Это обеспечивает длительный срок службы и надёжность.


Если зарядное устройство выдаёт ток 1С, то аккумулятор зарядится примерно за 2─3 часа. При достижении полного заряда и напряжение достигает величины отсечки, ток резко уменьшается и составляет несколько процентов от первоначального значения.

Стоит сказать, что при увеличении зарядного тока время зарядки практически не уменьшается. При более высоком токе быстрее растёт напряжение на первой стадии процесса, но второй этап подзарядки в этом случае идёт дольше.

Существуют зарядные устройства способные зарядить литиевую батарею примерно за час. Такое зарядное для литиевых аккумуляторов не имеет второго этапа и АКБ готова к работе уже после завершения первой стадии. Уровень заряда аккумуляторного элемента при этом будет составлять 70 процентов. Но, в силу природы батарей литиевого типа, для них это не критично.


На графике выше можно видеть три этапа зарядки Li аккумулятора:

  • Первый. Через батарею протекает максимально возможный (1С) ток заряда. Эта стадия заканчивается при увеличении напряжения до порогового значения;
  • Второй. Напряжение остаётся максимальным (4,1─4,2 вольта), а зарядный ток уменьшается до 3 процентов от первоначальной величины;
  • Третий. Компенсирующий заряд при его хранении (проводится примерно раз в 20 дней).

На этапе хранения для литиевых аккумуляторов струйная зарядка невозможна из-за того, что это приводит к металлизации Li. Но кратковременные подзарядки постоянным током компенсируют потери заряда. Такая зарядка должна выполняться, когда напряжения элемента падает до 4,05 вольта. Процесс зарядки прекращается при 4,2 вольта.

И ещё один важный момент. Литиевые аккумуляторные элементы очень чувствительны к перезаряду. Даже при небольшой перезарядке на поверхности минусового электрода начинается металлизация лития. Он очень активен и взаимодействует с электролитом. В результате реакции на катоде происходит выделение кислорода, повышается давление. В результате может произойти разгерметизация элемента, воспламенение и даже небольшой взрыв.

Кроме того, если при заряде постоянно превышать предел по напряжению, срок службы литиевых батарей снижается. Поэтому в большинстве литиевых аккумуляторов помимо самих элементов присутствует плата защиты.


Плата контролирует процесс заряда и разряда элементов по нижнему и верхнему пределу напряжения. Часто используются температурные датчики отключающие элементы при 90 градусов по Цельсию. В некоторых видах батарей имеется механический клапан, открывающийся при увеличении давления внутри корпуса выше определённого предела.

Есть исключения. К примеру, аккумуляторы с наличием марганца в их составе не имеют такой защиты. Марганец сильно тормозит металлизацию на аноде и образование кислорода. Поэтому в такой защите нет необходимости.

Всё это нужно иметь в виду при выборе зарядного устройства. Если вы будете заряжать литиевую банку напрямую без контроллера, напряжение должно контролироваться постоянно. Но гораздо лучше использовать устройства с автоматическим контролем или заряжать батарею через плату защиты.

Зарядные устройства для различных гаджетов

Зарядки для аккумуляторов смартфонов

Если вы лишились штатного зарядного устройства от своего телефона, вам поможет «лягушка». Это одно из наиболее распространённых устройств. Название зарядка получила за характерную форму.



Пользоваться ей проще простого. У зарядки есть 2 регулируемых по ширине контакта: плюс и минус. Вам нужно установить их в положение, подходящее для заряжаемого аккумулятора. Затем вставляется аккумулятор, чтобы был контакт с его выводами, и фиксируется верхней прижимной планкой. Естественно, что при установке нужно соблюдать полярность. Затем устройство вставляется в разъём 220 вольт и заряжается, пока индикатор не покажет окончание процесса.

Зарядное устройство для li ion аккумуляторов , схема которого приведенная в данной статье, было разработано на основе опыта конструирования подобных зарядников, усилиях по ликвидации ошибок и достижения максимальной простоты. Зарядное устройство отличается высокой стабильностью выходного напряжения.

Описание зарядки для литий ионных аккумуляторов

Основным элементом конструкции является (IO1) — источник опорного напряжения. Его стабильность значительно лучше, чем допустим , а, как известно для литий-ионных аккумуляторов это является очень важной характеристикой при зарядке.

Элемент TL431 используется в данной схеме в качестве стабилизатора тока в работе транзисторов Т1 и Т2. Зарядный ток протекает через R1. Если падение напряжения на этом резисторе превышает примерно 0,6 вольт, происходит ограничение тока проходящего через транзисторы Т1 и Т2. Значение резистора R1 эквивалентно току зарядки.

Выходное напряжение управляется вышеупомянутым элементом TL431. Значение определяется делителем выходного напряжения (R5, R7, P1).

Компоненты R4, С1 для подавления помех. Очень удобным является индикация величины зарядного тока, при помощи светодиода LED1. Свечение показывает какой ток протекает в базовой цепи транзистора T2, который пропорционален выходному току. По мере зарядки литий-ионного аккумулятора, яркость светодиода постепенно снижается.

Диод D1 предназначен для предотвращения разряда литий-ионного аккумулятора при отсутствии напряжения на входе зарядного устройства. Схема зарядки аккумулятора не нуждается в защите от неправильного подключения полярности li-ion аккумулятора.

Все компоненты размещены на односторонней печатной плате.

Датчик тока — резистор R1 состоит из нескольких резисторов соединенных параллельно. Транзистор Т2 необходимо разместить на теплоотводе. Его размер зависит от тока зарядки и разности напряжений между входом и выходом зарядного устройства.

Схема зарядного устройства литий-ионного аккумулятора настолько проста, что при правильном монтаже радиодеталей должна заработать с первого раза. Единственно, что может потребоваться, так это установка выходного напряжения. Для литий-ионного аккумулятора это примерно 4,2 вольт. При холостом ходе транзистор Т2 не должен быть горячим. Входное напряжение должно быть хотя бы на 2 вольт выше, чем необходимое напряжение на выходе.

Схема предназначена для зарядного тока до 1 ампер. Если нужно повысить ток заряда li-ion аккумулятора, то необходимо уменьшить сопротивление резистора R6 и выходной транзистор Т2 должен быть повышенной мощности.

В конце процесса зарядки светодиод все же немного светится, что бы это устранить, можно просто подключить параллельно со светодиодом резистор сопротивлением 10…56 кОм. Так при снижении тока заряда ниже 10 мА светодиод перестанет светиться.

http://web.quick.cz/PetrLBC/zajic.htm

Так как число заходов на страницы сайта по запросу «схема зарядки li-ion аккумулятора» существенно возросло. Можно даже сказать этих запросов большинство за день. Поэтому дабы удовлетворить информационный спрос, посвятим этой теме отдельную рубрику.

Для начала представляю вам простейшую схему зарядки для 3,7 вольтовых, литий ионных аккумуляторов. Питание 5 вольт, в данной схеме осуществляется от USB компьютера, Адаптера постоянного тока на 5 вольт (например зарядное от мобильного телефона) или маломощной солнечной батареи. Мощность зарядного устройтва предполагается около 1 ампера.

Мозгом и сердцем схемы служит микрочип MCP73831. Весьма легко достать или приобрести в радио магазине. Средняя цена около 1,5 — 2 американских вечнозелёных. Можно заказать у китайцев по ссылке всего за $3.88 за 10 шт. MCP73831 является одним из не дорогих микрочипов в линейке контролёров управления заряда для использования на ограниченном пространстве на плате. Даташит на MCP73831 можно посмотреть по . Эта микросхема использует постоянный ток / постоянный алгоритм заряда. А так же прекращает зарядку при полностью заряженном аккумуляторе.

Приведу общую схему:

Стали популярными в портативной электронике, потому что они могут похвастаться самой высокой плотностью энергии среди любой батареи, используемой в коммерческих целях. Преимущества включают в себя тысячи перезарядок и не возникновение « », в отличии от аккумуляторов. Тем не менее, Литий-ионные аккумуляторы должны заряжаться при тщательном контроле постоянного тока и постоянного напряжения. Переизбыток заряда и неосторожное обращение с литий-ионными элементами может привести к повреждению или нестабильной работе батареи.

Итак, как уже говорилось, ток заряда должен быть около 1 ампера. Подаваемое напряжение не должно превышать 5 вольт. Предполагаемые размеры платы зарядного устройства, не велики, около 25 х 19 х 10 мм.

Все необходимые элементы показаны на схеме. В качестве приемника 5 вольт служит гнездо под мини USB, но ваша фантазия не ограничена. Можно хоть напрямую впаять провода от адаптера 5 v.

  • Амперметр может быть подключен, только ко входу +5 v.
  • Ели входное напряжение, всё же будет незначительно больше, то ток заряда соответственно тоже будет больше. Но это ничего страшного, так как микрочип MCP73831 отсечет излишнее напряжение на выходе.
  • Так же микросхема прекратит зарядку при достижении аккумулятором напряжения в 3,7 v.
  • Лучше всего, чтобы зарядный ток составлял 35 — 37 % от ёмкости заряжаемого аккумулятора. Тоесть если АКБ на 1000 мА, то ток заряда должен быть около 400 мА.

Готовые платки под пайку:

Вот так выглядит готовая плата зарядного устройства литий ионных аккумуляторов.

Напомню, размеры должны получиться около 25 х 19 х 10 мм.

Хотя схема крайне проста в разработке и сборке и собрать её не составит особого труда, считаю за необходимое вас уведомить, что данную схему вы можете приобрести по цене не более $2, как вы уже догадались, у китайцев.

Крепить же саму банку аккумулятора можно, например, с помощью неодимовых магнитов, а так же смотрите другие варианты крепления контактов для баночных аккумуляторов

На этом всё, скоро покажу другие и схемы балансирующих зарядный устройств.

Рассказать друзьям