Синтетические волокна. Синтетическое полиамидное волокно

💖 Нравится? Поделись с друзьями ссылкой

Синтетическими волокнами называют волокна, при получении которых происходит синтез простых молекул. К синтетическим волокнам относятся: лавсан, нитрон, капрон, хлорин, винол, полиэтиленовые, полипропиленовые и другие волокна. В зависимости от сырья получаются такие полимеры: полиамидные, полиэфирные, полиакрилонитрильные, поливинилхлоридные, поливинилспиртовые, полиуретановые. Особенностью создания химического волокна является то, что процесс формирования одновременно является и его прядением.

Полиамидные волокна . Наиболее широко распространяемые полиамидные капроновые волокна. Исходным сырьём для получения капронового волокна является бензол и фенол (продукты переработки каменного угля). На химических заводах перерабатываются в капролактан . Из капронолактана перерабатывается капроновая смола. Это расплав, который продавливается щель из фильеры выходит в виде тонких струек, которые застывают при обдувании воздухом. На одной машине может находиться 60 — 100 фильер. В зависимости от вида химического волокна фильера имеет различное количество отверстий различной величины. Волокна вытягиваются, скручиваются, обрабатываются горячей водой для фиксации структуры. Также разработаны способы получения полого капронового волокна, которое профилированное и высокоусадочное. Применяется для изготовления ткани чулочно — носочных изделий, трикотажа, швейных ниток и технического назначения. Процессы изготовления анида и энанта аналогичны с изготовлением капронового волокна.

Свойства полиамидных волокон: легкость, упругость, высокая прочность при растяжении, высокая химическая стойкость, морозостойкость, стойкость к действию микроорганизмов и плесени. Волокна растворяются в концентрированных кислотах и феноле.

Горят волокна голубоватым пламенем образуя в конце оплавленный бурый шарик.

К полиамидным относится шелок — который применяется для изготовления легких платьевых и блузочных тканей и мегалоп — химически модифицированное волокно, гигроскопическое, прочное, стойкое к истиранию, придаёт ткани повышенный мерцающий блеск. Полиамидная профилированная нить — трилобал применяется для тканей шелкового типа, близких по внешнему виду к натуральному шёлку.

Полиэфирные волокна . Лавсан вырабатывается из продуктов переработки нефти. Не меняет своих свойств в мокром состоянии.

Свойства волокон лавсана: обладают легкостью, упругостью, молестойкие, стойкие к гниению, разрушается кислотами и щелочами, гигроскопичность очень низкая 0,4%. При влажной тепловой обработке выдерживают температуру 140ºС. При внесении в пламя лавсан плавится, затем медленно горит жёлтым коптящим пламенем.

Полиуретановые волокна . По своим физико-механическим свойствам относится к эланомерам, т.е. имеет высокие показатели эластического восстановления. Разрывное удлинение 600% — 800%. При снятии нагрузки сразу эластичность восстанавливается на 90%, а через минуту — 95%. Эти волокна малогигроскопичные — 1 — 1,5%, термостойкие, стойкие к истиранию, хорошо окрашиваются. Применяются для изготовления трикотажа, лент в спортивных корсетных, и лечебных эластичных изделиях.

Полиакрилонитринные волокна (ПАН). Нитрон вырабатывается из продуктов переработки каменного угля, нефти и газа. На ощупь более мягкие и шелковистые, чем лавсан и капрон. По прочности более чем в два раза меньше прочности капронового и лавсанового волокна. Удлинение при разрыве 16 — 22%, гигроскопичность 1,5%.

Нитрон имеет ряд ценных свойств : стойкий к действию минеральных кислот, щелочей, органических растворителей при химчистке, стоек к действию бактерий, плесени, моли. По теплозащитным свойствам нитрон превосходит шерсть. При температуре 200 — 250 °С, нитрон размягчается. Горит ярким, коптящим пламенем со вспышками.

Поливинилхлоридные волокна (ПВХ). Хлорин вырабатывается из этилена или ацетилена. Обладает стойкостью к действию воды, кислот, щелочей, окислителей, не гниёт, не имеет блеска.

По теплозащитным свойствам не уступает шерсти. Прочность в мокром состоянии не меняется, имеет невысокую стойкость к светопогоде. Влажно-тепловая обработка — при 70%. Недостаток — низкая теплостойкость. Хлорин не горит, не поддерживает горение, при внесении в пламя чувствуется запах дуста, спекается. Хлорин электризуется, поэтому применяется для лечебного белья, а также для получения рельефных шёлковых тканей, искусственного меха и тканей спецодежды (рыбаков, лесников, пожарных и др.).

Стойкость к агрессивным средам, высокая механическая прочность, эластичность и другте ценные качества сделали синтетическе волокна незаменимыми для современного текстильного производства.


В результате каждый день их используют миллиарды людей . И, в самом деле, любой из нас стремится предстать перед окружающими в наиболее привлекательном виде за счет использования наиболее привлекательной одежды, которую создают из самых лучших волокон, какие только существуют . Многим из нас требуется биоразлагаемый шовный материал в случае хирургического вмешательства. Мы все живем в домах, в которых необходимы волокна для воздушных и водяных фильтров . Удобная в обращении обтирочная салфетка из волокна помогает легко производить уборку на нашей кухне. И, действительно, широкий диапазон волокон позволяет создавать бесконечной количество применений.

Мы используем натуральные и синтетические волокна. Натуральные волокна использовались с незапамятных времен . Недавно на рынок были представлены новые бамбуковые волокна 1 , которые начинают широко использоваться . Эти волокна демонстрируют противомикробные свойства, и их можно использовать для создания многих текстильных применений, а также «зеленых» композитов. Хлопок, шелк, шерсть или лен (возможно, древнейшее волокно в мире) используются во всех сферах нашей повседневной жизни.

Интересно, что известные волокна являются полимерами. Большинство из них представляет собой просто линейные макромолекулы. Следует отдать должное д-ру Штаудингеру, лауреату Нобелевской премии, который был первым, кто отметил, что полимеры представляют собой линейные ковалентно связанные молекулы и не являются агрегатами, как считалось ранее. Он заложил основы химии синтетических органических полимеров и волокон . Вскоре после этого открытия пионерские работы д-ра Каротерса из компании Du Pont и д-ра Шлака из компании BASF представили нам полимерные волокна найлона 6,6 и найлона 6 соответственно. Позднее, в 1946 г. Винфилдом и Диксоном была разработана технология производства полиэтилен терефталата (PET ), и на рынке появились полиэфирные штапельные волокна. Найлоны и PET являются основными полимерными волокнами. На протяжении ряда лет было разработано множество других полимеров, и каждый день синтезируется множество новых макромолекул . В последние годы наблюдались значительные достижения в области разработки новых полимеров и полимерных волокон. Существенные достижения были достигнуты в области производства высокоэффективных волокон, эластичных волокон и нановолокон, произведенных из биополимеров за счет использования технологии электропрядения, а также высокоэффективных полиэфирных волокон. В результате, в этом номере Polymer Reviews мы ставим своей задачей информирование читателя о современном положении дел и обзорное рассмотрение этих новых достижений.

Высокоэффективные волокна

В последнее время большие усилия сосредотачиваются на производстве полимеров со сверхвысоким модулем. Ковалентные связи, присутствующие в этих полимерах, отвечают за их прочность . Тем не менее, синтетические полимеры обычно не демонстрируют соответствующего потенциального высокого модуля. Высокий модуль и прочность могут быть результатом структурного совершенства, такого как прямые, прекрасно выстроенные, стабильные и плотно упакованные цепи. Обычно присутствует сочетание расширенных цепей и высокой кристаллической ориентации .

Хорошо известно, что самые высокие значения модуля упругости, о которых сообщается для линейных полимеров, обычно намного меньше расчетных теоретических значений . Накамае и его коллеги 3 измерили "теоретический" модуль упругости , который был определен на основе наблюдения за зависящей от напряжения рентгеновской дифракцией в направлении полимерной цепи. Такое теоретическое значение модуля упругости сопоставляллось с окончательным модулем полимера. Большинство полимеров демонстрируют модули упругости при растяжении значительно ниже тех значений, которые имеются у их кристаллических решеток в направлении цепи . Только у ультра вытянутого полиэтилена с высокой молекулярной массой (UHMW PE ), изотактического полипропилена и кевлара модули, близкие к теоретическим значениям . Полиамидные волокна смогли достигать максимально только 1/20 своего теоретического значения.

В случае с полимерами с гибкой основной цепью, прочная и жесткая полимерная структура может быть получена за счет преобразования высоко ориентированных и расширенных конформаций цепей . В результате были получены значительно более высокие свойства упругости на разрыв, аналогичные свойствам ультра вытянутого полиэтилена с высокой молекулярной массой . Высокий модуль полиэтилена был получен за счет прядения из раствора (прядения геля) со сверх высокой степенью вытяжки. Закариадис и его коллектив успешно осуществляли вытяжку полиэтилена со сверхвысоким молекулярным весом более 200 раз и получили почти теоретическое значение модуля при такой степени вытяжки. Кристаллическая морфология полиэтилена со сверхвысокой молекулярной массой, получаемого из раствора (UHMWPE ), была деформирована втонковолокнистые структуры при значениях степени вытяжки, превышающих 200. Такая высокая степень вытяжки образуется за счет меньшего числа переплетений цепи и между- и межпластиновных связующих молекул в такой более упорядоченной морфологии кристаллов со сложными цепями и повторным входом . Высокоэффективные полиэтиленовые волокна в настоящее время производятся в промышленном масштабе с использованием метода гелепрядения компанией DSM High Performance Fibers из Нидерландов, совместным предприятием Toyobo / DSM в Японии, а также компанией Honeywell (ранее Allied Signal или Allied Fibers ) из США. Прочность Spectra 1000 достигает значения модуля Юнга 124 ГПа и прочности на разрыв 3.51 ГПа. По сообщению Афшари и Ли, была проведена большая работа для повышения термической стабильности этих волокон.

Компания Du Pont de Nemours в настоящее время разрабатывает товарные волокна и пряжи из M 5. Очень интересный мономер , 2,5-дигидрокситерефталевая кислота, используется для производства поли-2,6-диимидозопиридинилен-1,4-(2,5-дигидрокси)фенилена (PIPD ). Уникальной чертой этих полимеров является то, что две гидроксильные группы (на терефталевой кислоте) могут образовывать межмолекулярные связи и, следовательно, фибриллирование, которое часто является проблемой для арамидных волокон, здесь практически исключается . В результате, у волокон M 5 самый высокий предел прочности при сжатии среди всех синтетических волокон, Исследовательская оценка ультрафиолетовой стабильности М5 показала наличие превосходных эксплуатационных характеристик в этой области. Механические свойства этого нового волокна делают его конкурентоспособным по отношению к углеволокну при изготовлении многих применений, имеющих легкие, тонкие, выдерживающие нагрузку, жесткие, современные композитные компоненты и структуры . Огромные усилия были предприняты для разработки сверхпрочного кевлара, и, в последнее время, волокон PBO . Не так давно компания DuPont de Nemours объявила о планах расширения производства кевларовых полимеров на своем предприятии в Спруансе на 25% к 2010 г. для того, чтобы быть в состоянии удовлетворить растущий спрос. Благодаря своей высокой прочности на разрыв,высокому рассеянию энергии, низкой плотности и снижению веса, а также удобству кевлар используется при производстве пуленепробиваемых жилетов, шлемов, средств защиты собственности , панелей, средств защиты автомобилей и стратегического защитного экранирования для защиты человеческой жизни.

Волокна PBO были запущены в промышленное производство компанией Toyobo Co . в 1998 г. под торговым названием Zylon после почти 20 лет исследований в Соединенных Штатах и Японии . Волокна РВО обладают выдающими свойствами в области модуля упругости при растяжении (352 ГПа) и прочности на разрыв (5.6 ГПа) по сравнению с другими имеющимися на рынке высокоэффективными волокнами. Их удельная прочность и удельный модуль в 9 и 9.4 раз выше чем у стали . 6,7 К сожалению для PBO , высоким эксплуатационным характеристикам сопутствуют и существенные проблемы. Хорошо известна плохая устойчивость РВО к воздействию ультрафиолетовых лучей и видимого излучения. У РВО также отсутствует осевая прочность при сжатии . Прочность волокна РВО на разрыв также снижается в высокотемпературных и влажных средах . Немалые усилия были приложены для того, чтобы осуществить химическое изменение волокна РВО для повышения осевой прочности при сжатии .

И волокно кевлар, и волокно РВО рассмотрены Афшари и его коллегами в этой статье. Прочие высокоэффективные продукты, такие как волокна Vectran или PVA (Kurray ) здесь рассматриваться не будут. Мы надеемся собрать данные для другой работы о специальных синтетических волокнах в ближайшем будущем .

Эластичные волокна

Обзор эластичных волокон в данной статье представлен работой профессора Ху и его коллег из Гонконгского Политехнического университета .

Целый ряд компаний производит множество эластичных волокон, которые обладают эластичностью и способностью к восстановлению . Их можно получать с помощью прядения полимеров со специальной молекулярной структурой или модифицированных полимеров. В том, что касается упругого удлинения, эластичные волокна можно классифицировать как высокоэластичные волокна (удлинение 400-800%), среднеэластичные волокна (150-390%), низкоэластичные волокна (20-150%), и микроэластичные волокна с упругим удлинением менее 20%.

Традиционные эластичные волокна, такие как спандекс или лайкра, это хорошо известные сегментированные полиуретановые волокна, которые производятся промышленно с использованием технологии сухого прядения. Тем не менее, были разработаны многие новые эластичные продукты, включая высоко гигроскопичный и высвобождающий влагу спандекс (компания AsahiKasei ) или очень мягкий спандекс. И это лишь несколько примеров.

Еще одним интересным продуктом, который может термоотверждаться с волокнами РЕТ, является легко отверждаемый спандекс. У полиэфирного спандекса плохая термическая стабильность, поэтому его нельзя переплетать с полиэфирным волокном . В компании Asahi Kasei разработали низкотемпературный отверждаемый спандекс, который называется Roica BX , и обладает не только хорошим отверждением, но также может переплетаться с полиэфирным волокном и отверждаться при высокой температуре .

Еще одной инновацией является волокно со скрытой извитостью. В компании Du Pont de Nemours (Уилмингтон, Делавэр ) приступили к изучению первой пряжи со скрытой извитостью (из полипропилена) еще в начале шестидесятых годов. Недавно на рынке приобрели популярность новые запущенные в промышленное производство продукты со скрытой извитостью компании Du Pont , полиэфир T -400 и найлон T -800. Компания Unitica (Хиого, Япония) также запустила в промышленное производство пряжи со скрытой извитостью, Z -10 и S -10. Кроме того, двухкомпонентное волокно из найлона и полиуретана под названием Sideria , разработанное компанией Kanebo (Япония), позволяет приспособить до нужной степени термическую обработку к самой скрытой извитости.

XLAT M представляет собой растягивающееся волокно на полиолефиновой основе, которое обладает природной устойчивостью к воздействию агрессивных химических веществ, высокой теплоты и ультрафиолетовых лучей, и обеспечивает преимущества в области эксплуатационных характеристик, сопоставимые с преимуществами существующих эластичных волокон . Эта очень новая и интересная технология разработана компанией Dow Chemical , и представлена здесь Кейси, нашим постоянным автором .

Включение волокна XLA в ткани раскрывает несравненные возможности для разработки удобной в обращении и износостойкой одежды с улучшенной способностью сохранять форму. В США мы видим волокно Lastol , это новое родовое название для данного эластичного волокна на основе полиолефина . 10 " 13 В специальной микроструктуре XLA сочетаются длинные и эластичные цепи с кристаллическими и ковалентными связями или перекрестными связями с формированием сложной сети . За счет использования собственной технологии Dow по сшиванию с помощью электронного луча осуществляется управление длиной цепи, и количеством кристаллитов для придания волокну XLA уникального эластичного профиля . Высокое растяжение достигается при низких уровнях усилия, что позволяет одежде без труда растягиваться и сгибаться, сохраняя при этом свою изначальную форму .

Другой технологией будущего являются волокна с запоминанием формы. Как отмечает профессор Ху: "Задачей на будущее является исследование двухсторонних многофункциональных и имеющих много стимулов полимеров с бионическим запоминанием формы, которые можно будет активировать с помощью тепла, влажности, химических веществ, магнетизма и электричества или с помощью оптического стимула, и которые будут иметь функции устойчивости к воздействию ультрафиолетового излучения, а также противобактериальные, антистатические и препятствующие образованию плесени; а также создание системной, обобщенной и интегрированной теории полимеров с запоминанием формы наряду с применением таких полимеров с запоминанием формы при производстве текстиля". Не далек тот день, когда все эти идеи будут воплощены в жизнь в наших лабораториях и на наших промышленных предприятиях .

Волокнистые материалы, изготовленные электропрядением

С помощью традиционных технологий прядения волокна, таких как мокрое прядение, сухое прядение, прядение из расплава и гелепрядение можно производить полимерные волокна с диаметрами до значений микрометрового диапазона . При уменьшения диаметра волокна с микрометров до нанометров можно получить очень большое отношение площади поверхности к объему. Эти уникальные свойства делают полимерные нановолокна идеальными кандидатами для использования во многих важных применениях . Полимерные волокна могут генерироваться из электростатически стимулируемой струи полимерного раствора или полимерного расплава (Рис. 1). Эта технология, известная как технология электропрядения, привлекала большое внимание в предыдущем десятилетии благодарятому, что она обеспечивала возможность повторяемого производств полимерного волокна с диаметром в диапазоне от 50 до 500 нм. 15 " 19 Благодаря небольшим размерам ячеек и большой площади поверхности, которые изначально присущи текстильным, материалам, изготовленным электропрядением, эти ткани являются многообещающими для производства защитной одежды для солдат (они позволят максимально повысить выживаемость, возобновляемость и боевую эффективность индивидуальных систем солдатской одежды для борьбы с экстремальными погодными условиями , и в условиях баллистической, ядерной, биологической и химической войны ).

Общие сведения о текстильных волокнах, нитях.

Текстильные волокна делятся на две основных группы: природные и химические.

Природные – высокомолекулярные соединения растительного и животного происхождения

Химические волокна делятся на искусственные и синтетические.

Сырье для искусственных волокон:

Это природные высокомолекулярные соединения – древесная целлюлоза (еловая и сосновая щепа) ; альгиновая кислота из морских водорослей; белки молока, пшеницы, сои; остатки хлопкового пуха.

Сырье для синтетических волокон:

Это продукты переработки нефти, газа, каменного угля путем синтеза, когда из нескольких простых веществ получают одно сложное (синтез – это соединение, от этого и пошло название волокон)

Волокна могут быть:

А) элементарные – не делятся в продольном направлении без разрушения (хлопок, шерсть) ; элементарные волокна большой длины (десятки и сотни метров) называются элементарными нитями

Б) комплексные – скрепленные (скрученные перепутанные или склеенные между собой) в продольном направлении (лен, пенька) ; комплексные нити состоят из элементарных нитей

Кроме натурального шелка все комплексные нити относятся к химическим

Короткие отрезки искусственных или синтетических нитей, длиной 35-150 мм, называют “штапельками” или штапельными волокнами. При производстве вискозы известно, что это нити произвольной длины с резким блеском, очень гладкие. Но если вискозный жгут разрезать на штапельки, а потом скрутить в нить, то она теряет блеск, гладкость, но и теряет прочность. Так получили штапельное волокно, которое в России получило распространение после войны. До 1970 года вискозу называли штапелем

Текстуированные нити – это нити видоизмененных структур, т.е. комплексную нить специально сильно деформируют:

а) завивают путем ее кручения с последующей фиксацией этой завивки нагреванием – получают эластичную нить;

б) скручивают нити с разной усадкой и увлажняют; при этом одна нить сокращается по длине, а у другой усадки не происходит, она деформируется и образует завитки, выступающие на поверхности в виде петелек. Так получают высокообъемную пряжу.

в) армированная пряжа (нить) имеет сердечник и наружную оболочку; на сердечник из полиамидной (капроновой) нити накручивают (оплетают) другое волокно (хлопок, вискозу); получают армированную пряжу высокой механической прочности, мягкости, пушистости.

Получение искусственного волокна:

Получение раствора:

  1. Остатки еловой или сосновой щепы подсушивают
  2. Обрабатывают едким натром до набухания
  3. Масса растворяется, получается вязкий раствор
  4. Волокно формуют: под давлением раствор идет по трубопроводу, продавливается через фильеры в осадочную ванну с водным раствором серной кислоты. (Фильера – колпачок с очень маленькими отверстиями диаметром 0,07-0,08 мм.)
  5. При взаимодействии раствора и серной кислоты образуются твердые, очень длинные и очень тонкие элементарные нити
  6. Несколько элементарных нитей соединяют в одну комплексную путем вращения, и, вытягивая, ее наматывают на бобину

Отделка нитей:

  1. Промывают – удаляют серную кислоту.
  2. Отбеливают
  3. Моют мылом для придания мягкости и рассыпчатости

По этому принципу получают синтетические нити

Химические синтетические волокна.

Синтетические волокна оказывают большое влияние на развитие текстильной промышленности – значительно расширяется ассортимент тканей, улучшаются некоторые их свойства, создаются новые виды тканей за счет применения смесевых волокон, можно получить ткани с заданными свойствами, затраты на производство значительно ниже натуральных.

К синтетическим волокнам относятся: капрон, лавсан, нитрон.

Капрон – полиамидное волокно, получают путем синтеза (соединение, составление, сочетание) – из нескольких простых веществ получают одно сложное из продуктов переработки нефти и каменного угля (из синтетических высокомолекулярных веществ).

Промышленное производство впервые было предпринято в 1932 году в Германии.

В России в 1939 году выпуск этого волокна сыграл огромную роль в Великой Отечественной войне: из них изготавливали авиационные покрышки для тяжелых бомбар-дировщиков, без этих покрышек самолеты не могли подняться в воздух,так как шины из резины при разгоне не выдерживали трения, сгорали, разрушались.

Не было бы нейлона, не было бы тяжелых бомбардировщиков.

Получение. При получении капронового вещества, жидкость струйкой, в виде расплавленной смолы, вытекает из фильер, обдувается холодным воздухом и затвердевает. Чтобы предотвратить усадку, нити вытягивают и обрабатывают горячим паром.

Характеристика.

Общим отрицательным свойством всех синтетических волокон является отсутствие единой системы пор и отверстий, что отрицательно влияет на гигиенические свойства. Это самое прочное в мире волокно, прочнее хлопка в 10 раз, шерсти в 20 раз, вискозы в 50 раз, хотя в мокром состоянии прочность теряется, поэтому капрон и эластик (разновидность капрона) нельзя тереть и выкручивать при стирке.

Капроновую нить можно превратить в извитую – эластик,которая способна бесконечно вытягиваться и сжиматься, не изменяя своих качеств (в 100 раз волокно устойчиво к изгибу, чем вискоза, в 10 раз хлопка, в 20 раз шерсти.,50 раз вискозы)

Большим недостатком капронового волокна является электризуемость, накопление электрических зарядов, резкий блеск, большая гладкость поверхности, что служит причиной плохой сцепляемости с нитями, из-за этого происходит спуск петель на чулках и трикотажных изделиях. При носке изделий из смесевых тканей капроновые волокна вылезают на поверхность, образуя катышки, нарушая структуру и внешний вид изделий, а так как прочность капрона большая, то пилли в процессе носки не исчезают.

Применение. Из капрона вырабатывают тонкие легкие ткани для чехлов невестам, ленты, рыболовные сети, парашюты, канаты, веревки, леску, щетину, чулочно-носочные изделия, корды для покрышек самолетов и автомобилей, тонкое белье, тюль, кружева, платьевые, костюмные ткани и др. Очень широко волокна применяют как добавку к другим волокнам (для смесевых тканей).

В настоящее время начнут выпускать чулочные изделия из микромолекулярных соединений, используя нанотехнологии капронового волокна, что даст возможность за 15 минут восстановить разрыв на колготках, достаточно только соединить их порванные края.

Лавсан – полиэфирное волокно.

Диолен- Германия, терилен-Англия, дакрон США, тергаль-Франция

В 1967 году на флагштоке Останкинской башни водружен красный флаг.

Обычная материя на такой высоте не выдерживает сильных порывов ветра. Решено, что флаг будет выполнен из лавсана. Впервые волокна были получены в Англии в 1941 году из продуктов переработки нефти и каменноугольной смолы.

Производство и получения нитей такое же, как капрона.

В настоящее время производят во многих странах под разными названиями. В нашей стране выпускают под названием “лавсан” – сокращенное название- лаборатория высокомолекулярных соединений Академии наук. разработано под руководством профессора В.В.Кормаша.

Характеристика. Лавсановое волокно по виду напоминает шерсть, на ощупь мягкое, теплое, объемное, в3 раза дешевле шерсти, устойчиво к действию солнечных лучей, не выгорает, оно эластичное, легкое, очень прочное, очень упругое, из-за этого ткани не требуют глажения, изделия не мнутся, (в 3 раза сминаемость выше шерсти), устойчиво к действию плесени, кислот и щелочей. Лавсан используют в чистом виде, но в основном добавляют в шерсть, вискозу, хлопок. для улучшения их свойств и уменьшения цены.

Изделия с добавлением лавсана не мнутся, увеличивается их прочность, приобретают красивый внешний вид.

К недостаткам следует отнести низкие гигиенические качества и их способность в процессе эксплуатации образовывать на поверхности пиллинг, закатанные в шарики концы оборвавшихся волокон, что придает изделиям неопрятный вид.

Применение. Из лавсана изготавливают волокна для ковров, меха, ткани для гардин, платьев, купальных костюмов, трикотажа, тюля; из мононитей – сетку и щетину.

Из-за отмеченных отрицательных свойств чаще используют в смеси с натуральными и химическими волокнами.

В настоящее время широко применяется 100% лавсан – синтепон, который применяют при производстве игрушек, курток, теплых пальто, одеял. Разновидностью синтепона является синтепух, халафайбер,тенсулейт – утеплители для военных и летных курток, наполнителей подушек. В 60-е годы 20 века огромной популярностью пользовался кримплен, который совсем не сминался, не требовал глажения, имел красивую фактуру, очень яркую окраску, но не пропускал воздух., плохо впитывал влагу. Использовали кримплен на мужские и женские костюмы

Комплексные лавсановые нити крутят и подвергают обработке горячим воздухом, от этого они становятся мягкими и пушистыми. Их используют для изготовления тканей трикотажных спортивных костюмов, полотенец. купальных костюмов.

Нитрон – полиакрилонитрильные волокна.

Орлан. акрилан- США, кашмилон-Япония, куртель-Англия, дралон -Германия

В нашей стране начали выпускать в 1963 году

Волокно формуют из полиакрилонитриловых сополимеров сухим или мокрым способом.

Волокно продавливают через фильеры, вытягивают и подвергают термообработке, (обдают горячим паром) , закрепляя расположение макромолекул.

Вырабатывают в виде волокон. Чтобы придать им извитость, их гофрируют в специальных машинах. Извитое нитроновое волокно по внешнему виду схоже с тонким шерстяным волокном. Нитрон – это заменитель шерсти, самое “теплое” в мире из химических нитей.

Характеристика. Нитроновое волокно обладает высокими теплозащитными свойствами, самое теплое из всех химических волокон, с очень малой сминаемостью и усадкой, совсем не выгорает, хорошо красится, сравнительно большой прочности, устойчивость к истиранию: в 5-10 раз меньше, чем капроновое и лавсановое,; изделия сохраняют 80% своей исходной прочности в течение полутора лет эксплуатации.

Волокно хрупкое, электризуется и пиллингуется, но пили, в процессе носки, исчезают.

Изделия из нитрона прекрасно стираются в теплой воде с мылом, любые пятна быстро исчезают Изделия можно чистить бензином, ацетоном. Волокно малой гигроскопичности, поэтому гигиенические свойства плохие,. но теплозащитность очень большая

Применение. По светостойкости нитроновые волокна превосходят все текстильные волокна, поэтому из него изготавливают гардинно-тюлевые, тентовые и другие изделия. По внешнему виду и некоторым свойствам напоминает шерсть, выпускают в виде волокон и применяют аналогично шерсти: для выработки платьево-костюмных тканей, ковров искусственного меха, различных трикотажных изделий, головных уборов, шарфов, одеял, перчаток. Из нитей – гардинно-тюлевые изделия, рыболовные снасти.

Сочетание шерсти и нитрона дают прекрасные смесевые волокна для красивых, тонких, теплых трикотажных костюмов

Характеристика синтетических волокон


П.п
Характеристика и свойства капрон лавсан нитрон
1 поверхность гладкая гладкая шероховатая
2 блеск резкий слабый матовый
3 прочность значительная, в мокром состоянии уменьшается, нельзя тереть и выкручивать при стирке большая, в мокром состоянии не уменьшается
4 Длина волокна произвольная произвольная произвольная
5 горение плавится, а затем загорается голубовато-желтым пламенем, выделяется запах сургуча, образуется спек из которого можно в горячем виде вытянуть нить, остаток-темный твердый шарик горит слабовато-желтым цветом с выделением черной густой копоти, образуется твердый черный шарик горит вспышками, интенсивно, выделяя черную копоть, пламя желтое, образуется темный наплыв неправильной формы
6 сминаемость малая Очень мала средняя
7 гигроскопичность низкая низкая низкая
8 теплозащитность малая высокая значительная
9 осыпаемость большая большая малая
10 усадка малая малая малая
11 драпируемость малая малая малая
12 износостойкость значительная большая значительная
13 раздвижка нитей значительная малая малая
14 водопроницаемость малая малая малая

Искусственные волокна - вискоза, ацетат, триацетат.

Вискоза - (вязкий, клейкий) – это концентрированный раствор природных соединений - гидратцеллюлозные волокна

Волокно было получено в 80-е годы 19 века ботаником Негели, который установил, что хлопковое волокно состоит из целлюлозы. Это открытие привело к мысли, что можно выработать волокно подобное хлопковому, но из более дешевого целлюлозного сырья -остатков древесины. Попытки получения такого волокна увенчались успехом в 1892 году, когда американцы Кросс, Бивен, Бидл запатентовали вискозный способ, который совершенствовался и модернизировался.

Получение. Остатки еловой щепы и хлопкового пуха обрабатывают раствором щелочи (едкий натр) , получают щелочную целлюлозу, которую затем обрабатывают сероуглеродом и полученный растров продавливают через фильеры - пластины с мельчайшими отверстиями - получают струйки материала, которые затвердевают и образуют элементарные нити.

Ученые России предвидели блестящую будущность вискозного волокна. Д.И. Менделеев в 1900 году писал: “Россия изобилует всякими растительными продуктами...

Клетчатка не истощает почвы, для питания не пригодна... если бы мы отбросы превратили в изделия из вискозы, то разбогатели бы побольше, чем от всей нашей торговли”

Характеристика. Вискозное волокно является самым универсальным из химических волокон, оно приближено к хлопковому. Волокно имеет рыхлую структуру, напоминает шелк по внешнему виду, имеет прекрасные гигиенические свойства (”дышит”) , обладает повышенной гигроскопичностью, большой прочностью, хорошо утюжатся.

Недостатком является резкий блеск, но если волокна вискозного жгута разрезать на части (штапепьки) , а затем вытянуть и скрутить в пряжу, то это штапельное волокно теряет блеск и прочность немного уменьшается, сохраняя остальные свойства вискозы. При стирке изделия сильно садятся (до 10 %) , в мокром состоянии теряют прочность до 60% , поэтому их нельзя сильно тереть и выкручивать.

Применение. В чистом виде и в сочетании с другими волокнами или нитями вырабатывают подкладочные, платьевые, сорочечные, бельевые, декоративные ткани, верхний, бельевой трикотаж, чулочно-носочные, текстильно-галантерейные изделия (ленты, тесьма, галстуки), целлофан. Если вискозную нить сильно вытянуть, то верхний слой нити растянется больше, а внутренний - меньше, в результате волокно получает извитость, из этих нитей изготавливают ковры. Если в прядильный раствор вискозы вмешать воздух, то получим химическую реакцию с выделением углекислого газа, в волокне образуются пустоты, эти пустотелые вискозные волокна используют для производства не тонущих спасательных костюмов Усовершенствованным вискозным волокном является сиблон, который мало мнется, мало садится, прочное и блестящее. Его изготавливают из высококачественной целлюлозы.

Ацетатное волокно (ацетилцеллюлоза)

Впервые на мировом рынке появилось в 1921 году, как результат трудов американских ученых и технологов под руководством Дрейфуса.

Получение относительно безвредное, отличается простотой технологического процесса и доступностью вспомогательных материалов.

Получение. Сырьем для получения ацетатного волокна служат остатки хлопкового пуха или облагороженной древесной целлюлозы, обработанные уксусным ангидритом и уксусной кислотой: получают рыхлые хлопья первичного ацетата.(“уксус” по латыни “ацетум”, от этого произошло и название “ацетатное”)

Для получения вторичного ацетата первичный ацетат омыливают – добавляют определенное количество воды; полученные белые хлопья отжимают, обрабатывают в смеси ацетона и спирта, продавливают через фильеры, и при помощи теплого воздуха испаряют смесь,от чего нити затвердевают. Из этих блестящих нитей и ткут ацетатное полотно. В сочетании с другими нитями волокно используют с шелком, вискозой, шерстью и другими смесевыми тканями.

Характеристика. Ацетатное волокно мало гигроскопично, мало впитывает влагу, мягкое, легкое, тонкое, упругое, блестящее, но при температуре выше 85 градусов блеск теряет, сильно электризуется, в мокром состоянии прочность теряет очень мало, но имеет склонность к образованию заломов в мокром состоянии, боится высоких температур и при 140 градусах разрушается, не подвержено действиям плесени, сильно осыпается, мало сминается, быстро сохнет (вода стекает) , светостойкое.

Изделия утюжат влажным по изнаночной стороне, чтобы не образовывались ласы;

нельзя чистить ацетоном, можно растворить ткань

Применение. В настоящее время выпуск ацетатных волокон и нитей резко сократился из-за малой потребительской востребованности

В 60-десятые годы ХХ века использовали ткани для женских платьев, блузок,. летних костюмов

Триацетатное волокно.

Получают из первичного ацетата путем воздействия на него химического состава.

Формование волокна происходит так же, как ацетатного, но при низких температурах, что ведет к некоторым различиям в их свойствах: отличается низкой гигроскопичностью, белее высокой температурой плавления и глажения, его можно отбеливать и проще окрашивать,

не нуждается в глажении, хорошо держит складки плиссе и гофре даже после стирки, что улучшает процесс эксплуатации; сильно осыпается.

Применение: Изготавливают ткани для галстуков (из-за низкой прочности).тюля, покрывал на кровати, кружев, юбок гофре и плиссе, сорочек

Характеристика искусственных волокон


п.п
Признаки и свойства Вискоза Ацетат Триацетат
1 поверхность гладкая

скользкая

гладкая

скользкая

гладкая
2 блеск резкий матовый матовый
3 Длина волокна произвольная произвольная произвольная
4 прочность высокая, в мокром состоянии уменьшается до 50% высокая, в мокром состоянии уменьшается на 10% средняя, в мокром состоянии не уменьшается
5 горение Хорошо, спокойным ровным желтым пламенем, остаток серый пепел, запах жженой бумаги Желтое пламя с образованием темного наплыва, запах уксуса Желтое пламя с образованием бурого наплыва, запах слабый
6 сминаемость большая малая почти 0
7 гигроскопичность большая средняя средняя
8 теплозащитность средняя меньше вискозы меньше вискозы
9 осыпаемость большая большая большая
10 усадка большая до 20% малая малая
11 драпируемость средняя средняя средняя
12 Раздвижка нитей большая большая большая
13 Износостойкость средняя высокая малая

Литература:

  1. Т.Д.Балашова. Н.Е.Бушуева, И.В.Попиков. Отделка шелковых тканей.;изд. “Легкая промышленность”., 1986, Ленинград.
  2. Л.М.Михаловская. Текстильные товары. Изд. Экономика.; 1990, Москва.
  3. Л.В.Орленко. Терминологический словарь одежды, Легпромиздат; 1996, Москва
  4. С.И. Столярова, Л.Д.Домненкова. Обслуживающий труд. Просвещение, 1985.
  5. Редакция И.Н.Федоровой. Занятия по обслуживающему труду в 1У – УШ классах. Москва, Просвещение, 1975.

Искусственные волокна. Среди химических волокон по объему выпуска первое место занимает искусственное вискозное волокно. Основным веществом для получения вискозного волокна служит древесная целлюлоза и дешевые доступные химические вещества. Достоинством вискозного волокна является высокая экономическая эффективность его производства и переработки. Так, при производстве 1 кг вискозной пряжи трудовые затраты в 2-3 раза ниже затрат на производство такой же пряжи из хлопка и в 4,5-5 раз ниже производства 1 кг шерстяной пряжи.

Выпускается вискозное волокно различной длины и толщины. Толщина элементарного волокна вискозного шелка бывает от 0,5 до 0,2 текс.

Вискозные волокна обладают достаточной прочностью, однако в мокром состоянии их прочность падает до 50-60%. Их недостатком является способность усаживаться, т. е. сокращаться по длине, особенно после стирки изделий.

Эти волокна обладают высокими гигиеническими свойствами, так как они характеризуются способностью хорошо впитывать влагу. Вискозные волокна термоустойчивые.

При нагревании они не размягчаются и выдерживают нагрев без разрушения до 150°. При более высоких температурах (175-200°) наступает процесс разложения волокна.

Вискозные волокна с повышенными свойствами получили название полинозных. По своим свойствам они приближаются к хлопковому волокну.

На основе хлопковой или древесной целлюлозы получают другие искусственные волокна - медноаммиачные и ацетатные.

Медноаммиачное волокно по своим свойствам напоминает вискозное волокно. Производится оно в небольших количествах, так как его производство гораздо дороже, чем производство других искусственных волокон. Применяется главным образом в смеси с шерстью.

Ацетатные волокна выпускают двух видов: диацетатные и триацетатные. Диацетатные волокна называют обычно ацетатными. Ацетатные волокна обладают достаточной прочностью. Их разрывное удлинение 18-25%. Разрывная прочность ацетатного волокна в мокром состоянии снижается на 40-50%, а триацетатного - на 10-15%. Ацетатное волокно поглощает примерно 6,5% влаги, а триацетатное - не более 1-1,5%.

Ацетатные волокна по своим свойствам занимают промежуточное положение между искусственными и синтетическими волокнами.

В отличие от вискозных ацетатные волокна термопластичны и при температуре 140-150° начинают деформироваться.

Применение ацетатных волокон в смеси с вискозными позволяет значительно снизить сминаемость изделий. Ацетатные волокна не окрашиваются красителями, применяемыми для крашения вискозных волокон, поэтому применение ацетатных волокон в смеси с вискозными позволяет создавать различные колористические эффекты, облагораживать лицевую поверхность ткани.

Из других искусственных волокон в производстве тканей используют стеклянные и металлические; металлические нити применяют для придания тканям различных декоративных эффектов; они носят название алюнит, люрекс, метлон и др.

Синтетические волокна. Из синтетических волокон наибольшее распространение получили полиамидные волокна, к которым относятся капрон, анид, энант и другие волокна. В нашей стране среди полиамидных волокон первое место занимает капроновое волокно. Для его получения используют смолу капролактам, которую получают путем химического синтеза из относительно простых органических веществ.

Полиамидные волокна обладают рядом ценных свойств: высокой прочностью на разрыв, упругостью и исключительной устойчивостью к истиранию.

Преимуществом полиамидных волокон является высокая стойкость к истиранию и многократным деформациям.

Текстильными волокнами называют гибкие прочные тела с малыми поперечными размерами, ограниченной длины, пригодные для изготовления текстильных изделий.

Текстильные волокна подразделяют на два класса: натуральные и химические. По происхождению волокнообразующего вещества натуральные волокна подразделяют на три подкласса: растительного, животного и минерального происхождения, химические волокна — на два подкласса: искусственные и синтетические.

Искусственное волокно — химическое волокно, изготовленное из природных высокомолекулярных веществ.

Синтетическое волокно — химическое волокно, изготовленное из синтетических высокомолекулярных веществ.

Волокна могут быть элементарными и комплексными.

Элементарное — волокно, не делящееся в продольном направлении без разрушения (хлопок, лен, шерсть, вискоза, капрон и др.). Комплексное волокно состоит из продольно скрепленных элементарных волокон.

Волокна являются исходным материалом для изготовления текстильных товаров и могут применяться как в естественном, так и в смешанном виде. Свойства волокон влияют на технологический процесс переработки их в пряжу. Поэтому важно знать основные свойства волокон и их характеристики: толщину, Длину, извитость. От толщины волокон и пряжи зависит толщина получаемых из них изделий, которая влияет на их потребительские свойства.

Пряжа из тонких синтетических волокон более склонна к пиллингу — образованию закатанных волокон на поверхности материала. Чем длиннее волокна, тем пряжа из них ровнее по толщине и прочнее.

Натуральные волокна

Хлопок — это волокна, покрывающие семена растений хлопчатника. Хлопчатник — однолетнее растение высотой 0,6—1,7 м, произрастающее в районах с жарким климатом. Основным веществом (94—96 %), из которого состоит хлопковое волокно, является целлюлоза. Хлопковое волокно нормальной зрелости под микроскопом имеет вид плоской ленточки со штопорообразной извитостью и с каналом, заполненным внутри воздухом. Один конец волокна со стороны его отрыва от семени хлопчатника открыт, другой, имеющий коническую форму, закрыт.

Количество волокна зависит от степени его зрелости.

Хлопковым волокном присуща извитость. Волокна нормальной зрелости имеют наибольшую извитость — 40—120 извитков на 1 см.

Длина хлопковых волокон колеблется от 1 до 55 мм. В зависимости от длины волокон хлопок делят на коротковолокнистый (20—27 мм), средневолокнистый (28—34 мм) и длинноволокнистый (35—50 мм). Хлопок длиной менее 20 мм называют непряд-иым, т. е. из него невозможно выработать пряжу. Между длиной и толщиной хлопковых волокон существует определенная зависимость: чем длиннее волокна, тем они тоньше. Поэтому длинноволокнистый хлопок называют и тонковолокнистым, он имеет толщину 125—167 миллитекс (мтекс). Толщина средневолокнистого хлопка составляет 167—220 мтекс, коротковолокнистого — 220— 333 мтекс.

Толщина волокон выражается через линейную плотность в гексах. Текс показывает, сколько граммов весит отрезок волокна длиной в 1 км. Миллитекс = мг/км.

От длины и толщины волокон зависит выбор системы прядения (получения пряжи), что в свою очередь влияет на качество пряжи и ткани. Так, из длинноволокнистого (тонковолокнистого) хлопка получают тонкую, ровную по толщине, с малой ворсистостью, плотную, прочную пряжу 5,0 текс и выше, используемую для изготовления высококачественных тонких и легких тканей: батиста, маркизета, вольты, сатина гребенного и др.

Из средневолокнистого хлопка изготовляют пряжу средней и выше средней линейной плотности 11,8—84,0 текс, из которой вырабатывают основную массу хлопчатобумажных тканей: ситцы, бязи, миткали, сатины кардные, вельветы и др.

Из коротковолокнистого хлопка получают рыхлую, толстую, неровную по толщине, пушистую, иногда с посторонними примесями пряжу — 55—400 текс, используемую для производства фланели, бумазеи, байки и др.

Хлопковое волокно обладает многочисленными положительными свойствами. Оно имеет высокую гигроскопичность (8— 12 %), поэтому хлопчатобумажные ткани обладают хорошими гигиеническими свойствами.

Волокна достаточно прочные. Отличительной особенностью хлопкового волокна является повышенная прочность на разрыв в мокром состоянии на 15—17 %, что объясняется увеличением площади поперечного сечения волокна вдвое в результате его сильной набухаемости в воде.

Хлопок имеет высокую термостойкость — разрушение волокон до 140°С не происходит.

Хлопковое волокно более стойкое, чем вискозное и натуральный шелк, к действию света, но по светостойкости уступает лубяным и шерстяным волокнам. Хлопок обладает высокой устойчивостью к действию щелочей, что используется при отделке хлопчатобумажных тканей (отделка — мерсеризация, обработка раствором едкого натра). При этом волокна сильно набухают, усаживаются, становятся неизвитыми, гладкими, стенки их утолщаются, канал суживается, прочность повышается, блеск усиливается; волокна лучше окрашиваются, прочно удерживая краситель. Из-за малой упругости хлопковое волокно имеет высокую сминаемость, большую усадку, низкую стойкость к воздействию кислотой. Хлопок применяется для производства тканей разного назначения, трикотажа, нетканых полотен, гардинно-тюлевых и кружевных изделий, швейных ниток, тесьмы, шнурков, лент и др. Хлопковый пух применяют в производстве медицинской, одежной, мебельной ваты.

Лубяные волокна получают из стеблей, листьев или оболочек плодов различных растений. Стеблевыми лубяными волокнами являются лен, пенька, джут, кенаф и др., листовыми — сизаль и др., плодовыми — койр, получаемый из покрова скорлупы кокосовых орехов. Из лубяных волокон наибольшую ценность представляют льняные.

Лен — однолетнее травянистое растение, имеет две разновидности: лен-долгунец и лен-кудряш. Из льна-долгунца получают волокна. Основным веществом, из которого состоят лубяные волокна, является целлюлоза (около 75 %). К сопутствующим веществам относятся: лигнин, пектиновые, жировосковые, азотистые, красящие, зольные вещества, вода. Льняное волокно имеет четыре-шесть граней с заостренными концами и характерными штрихами (сдвигами) на отдельных участках, возникшими) результате механических воздействий на волокно при его получении.

В отличие от хлопкового льняное волокно имеет сравнительно толстые стенки, узкий канал, закрытый с обоих концов; поверхность волокна более ровная и гладкая, поэтому льняные ткани меньше, чем хлопчатобумажные, загрязняются и легче отстирываются. Эти свойства льна особенно ценны для бельевых полотен. Льняное волокно уникально и тем, что при высокой гигроскопичности (12 %) оно быстрее других текстильных волокон поглощает и выделяет влагу; оно прочнее, чем хлопковое, удлинение при разрыве — 2—3 %. Содержание в льняном волокне лигнина делает его устойчивым к действию света, погоды, микроорганизмов. Термического разрушения волокна не происходит до + 160°С. Химические свойства льняного волокна аналогичны хлопковому, т. е. оно устойчиво к действию щелочей, но не устойчиво к кислотам. В связи с тем, что льняные ткани имеют свой естественный достаточно красивый шелковистый блеск, мерсеризации их не подвергают.

Однако льняное волокно сильно сминается из-за низкой упругости, трудно отбеливается и окрашивается.

Благодаря высоким гигиеническим и прочностным свойствам из льняных волокон получают бельевые ткани (для нательного, столового, постельного белья), летние костюмно-платьевые ткани. При этом около половины льняных тканей вырабатываются в смеси с другими волокнами, значительная часть которых приходится на полульняные бельевые ткани с хлопчатобумажной пряжей по основе.

Из льняных волокон изготавливают также парусины, пожарные рукава, шнуры, обувные нитки, а из очесов льна — более грубые ткани: мешочные, холсты, брезенты, парусины и др.

Пеньку получают из однолетнего растения конопли. Из волокон вырабатывают канаты, веревки, шпагаты, упаковочные и мешочные ткани.

Кенаф, джут получают из однолетних растений семейства мальвовых и липовых. Из кенафа и джута вырабатывают мешочные и тарные ткани; используют для транспортирования и хранения влагоемких товаров.

Шерсть — волокно из снятого волосяного покрова овец, коз, верблюдов, кроликов и других животных. Шерсть, снятую стрижкой в виде цельного волосяного покрова, называют руном. Шерстяные волокна состоят из белка кератина, содержащего, как и другие белки, аминокислоты.

Шерстяные волокна под микроскопом можно легко отличить от других волокон — их наружная поверхность покрыта чешуйками. Чешуйчатый слой состоит из мелких пластинок в форме

конусообразных колец, нанизанных друг на друга, и представляет собой ороговевшие клетки. За чешуйчатым слоем следует корковый — основной, от которого зависят свойства волокна и изделий из них. В волокне может быть и третий — сердцевинный слой, состоящий из рыхлых, заполненных воздухом клеток. Под микроскопом видна и своеобразная извитость шерстяных волокон. В зависимости от того, какие слои в шерсти присутствуют, она может быть следующих видов: пух, переходный волос, ость, мертвый волос.

Пух — тонкое, сильно извитое, шелковистое волокно без сердцевинного слоя. Переходный волос имеет прерывистый рыхлый сердцевинный слой, благодаря чему он неравномерен по толщине, прочности, имеет меньшую извитость.

Ость и мертвый волос имеют большой сердцевинный слой, характеризуются большой толщиной, отсутствием извитости, повышенной жесткостью и хрупкостью, малой прочностью.

В зависимости от толщины волокон и однородности состава шерсть подразделяют на тонкую, полутонкую, полугрубую и грубую. Важными показателями качества шерстяного волокна являются его длина и толщина. Длина шерсти влияет на технологию получения пряжи, ее качество и качество готовых изделий. Из длинных волокон (55—120 мм) получают гребенную (камвольную) пряжу — тонкую, ровную по толщине, плотную, гладкую.

Из коротких волокон (до 55 мм) получают аппаратную (суконную) пряжу, которая, в отличие от камвольной, более толстая, рыхлая, пушистая, с неровностями по толщине.

Свойства шерсти по-своему уникальны — ей присуща высокая свойлачиваемость, что объясняется наличием на поверхности волокна чешуйчатого слоя.

Благодаря этому свойству из шерсти производятся фетр, суконные ткани, войлок, одеяла, валяная обувь. Шерсть обладает высокими теплозащитными свойствами, имеет высокую упругость. Щелочи на шерсть действуют разрушающе, к кислотам она устойчива. Поэтому если шерстяные волокна, содержащие растительные примеси, обработать раствором кислоты, то эти примеси растворяются, а шерстяные волокна остаются в чистом виде. Такой процесс очистки шерсти называют карбонизацией.

Гигроскопичность шерсти высокая (15—17 %), но в отличие от других волокон она медленно поглощает и отдает влагу, оставаясь на ощупь сухой. В воде она сильно набухает, площадь поперечного сечения при этом увеличивается на 30—35 %. Увлажненное волокно в растянутом состоянии можно зафиксировать сушкой, при повторном увлажнении длина волокна снова восстанавливается. Это свойство шерсти учитывается при влажно-тепловой обработке швейных изделий из шерстяных тканей для сутюжки и оттяжки их отдельных деталей.

Шерсть — достаточно прочное волокно, удлинение при разрыве высокое; в мокром состоянии волокна на 30 % теряют прочность. Недостатком шерсти является малая термостойкость — при температуре 100—110°С волокна становятся ломкими, жесткими, снижается их прочность.

Из тонкой и полутонкой шерсти, как в чистом виде, так и в смеси с другими волокнами (хлопковыми, вискозными, капроновыми, лавсановыми, нитроновыми), вырабатывают камвольные и тонкосуконные платьевые, костюмные, пальтовые ткани, нетканые полотна, трикотажные изделия, платки, одеяла; из полугрубой и грубой — грубосуконные пальтовые ткани, валяную обувь, войлок.

Козий пух применяют в основном для выработки платков, трикотажных изделий и некоторых платьево-костюмных, пальтовых тканей; верблюжью шерсть — для производства одеял и национальных изделий. Из восстановленной шерсти получают менее качественные ткани, валяную обувь, нетканые материалы, строительный войлок.

Натуральный шелк по своим свойствам и себестоимости — ценнейшее текстильное сырье. Получают его разматыванием коконов, образуемых гусеницами шелкопрядов. Наибольшее распространение и ценность имеет шелк тутового шелкопряда, на долю которого приходится 90 % мирового производства шелка.

Родина шелка — Китай, где тутовый шелкопряд культивировался за 3000 лет до н. э. Получение шелка проходит следующие стадии: бабочка тутового шелкопряда откладывает яички (грену), из которых выводятся гусеницы длиной около 3 мм. Питаются они листьями тутового дерева, отсюда и название шелкопряда. Через месяц гусеница, накопив в себе натуральный шелк, через шелкоотделительные железы, расположенные по обе стороны тела, окутывает себя непрерывной нитью в 40—45 слоев и образует кокон. Намотка кокона длится 3—4 дня. Внутри кокона гусеница превращается в бабочку, которая, проделав отверстие в коконе щелочной жидкостью, выходит из него. Такой кокон для дальнейшей размотки непригоден. Коконные нити очень тонкие, поэтому разматывают их одновременно с нескольких коконов (6—8), соединяя в одну комплексную нить. Такая нить называется шелком-сырцом. Общая длина разматываемой нити составляет в среднем 1000—1300 м.

Оставшийся после размотки кокона сдир (тонкая, не поддающаяся размотке оболочка, содержащая около 20 % длины нити), бракованные коконы перерабатывают в короткие волокна, из которых получают шелковую пряжу.

Из всех природных волокон натуральный шелк — самое легкое волокно и наряду с красивым внешним видом обладает высокой гигроскопичностью (11 %), мягкостью, шелковистостью, малой сминаемостью.

Натуральный шелк обладает высокой прочностью. Разрывная нагрузка шелка в мокром состоянии снижается примерно на 15 %. Натуральный шелк устойчив к кислотам, к щелочам — нет, имеет низкую светостойкость, относительно низкую термостойкость (100—110°С) и высокую усадку. Из шелка вырабатывают платьевые, блузочные ткани, также швейные нитки, ленты, шнурки.

Химические волокна получают путем химической переработки природных (целлюлозы, белков и др.) или синтетических высокомолекулярных веществ (полиамидов, полиэфиров и др.).

Технологический процесс изготовления химических волокон состоит из трех основных стадий — получения прядильного раствора, формирования из него волокон и отделки волокон. Полученный прядильный раствор поступает в фильеры — металлические колпачки с маленькими отверстиями (рис. 6) — и вытекает из них в виде непрерывных струек, которые сухим или мокрым способом (воздухом или водой) затвердевают и превращаются в элементарные нити.

Форма отверстий фильер обычно круглая, а для получения профилированных нитей используют фильеры с отверстиями в виде треугольника, многогранника, звездочек и др.

При выработке коротких волокон используют фильеры с большим количеством отверстий. Элементарные нити со многих фильер соединяют в один жгут и разрезают на волокна необходимой длины, которая соответствует длине натуральных волокон. Сформированные волокна подвергают отделке.

В зависимости от вида отделки получают волокна белые, окрашенные, блестящие и матированные.

Искусственные волокна

Искусственные волокна получают из природных высокомолекулярных соединений — целлюлозы, белков, металлов, их сплавов, силикатных стекол.

Наиболее распространенное искусственное волокно — вискозное, вырабатывается из целлюлозы. Для изготовления вискозного волокна используют обычно древесную, преимущественно еловую целлюлозу. Древесину расщепляют, обрабатывают химическими реагентами, превращают в прядильный раствор — вискозу.

Вискозные волокна вырабатывают в виде комплексных нитей и волокон, их применение различно.

Вискозное волокно гигиенично, имеет высокую гигроскопичность (11—12 %), изделия из вискозы хорошо впитывают влагу; оно устойчиво к щелочам; термостойкость вискозного волокна высокая.

Но вискозное волокно имеет недостатки:

— из-за низкой упругости сильно сминается;

— высокая усадка волокна (6—8 %);

— в мокром состоянии теряет прочность (до 50—60 %). Изделия не рекомендуется тереть и выкручивать.

Из других искусственных волокон используют ацетатные, триацетатные волокна.

Металлические нити представляют собой мононити круглого или плоского сечений из алюминиевой фольги, меди и ее сплавов, серебра, золота и других металлов. Алюнит (люрекс) — металлическая нить из алюминиевой фольги, покрытой с обеих сторон защитной противоокислительной пленкой.

Синтетические волокна

Синтетические волокна получают из природных, низкомолекулярных веществ (мономеров), которые путем химического синтеза превращаются в высокомолекулярные (полимеры).

Полиамидные (капроновые) волокна получают из полимера капролактама — низкомолекулярного кристаллического вещества, которое вырабатывают из каменного угля или нефти. В других странах капроновые волокна называются иначе: в США, Англии — нейлон, в Германии — дедерон.

Полиэфирные волокна (лавсан) выпускают под различными названиями: в Англии, Канаде — терилен, в США— дакрон, в Японии — полиэстер. Наличие ценных потребительских свойств полиэфирных волокон обусловило их широкое применение в текстильном, трикотажном производстве, в производстве искусственного меха.

Полиакрилонитрильные волокна (акрил, нитрон): в США — орлон, в Англии — куртель, в Японии — кашмилон. Нитроновое волокно по своим свойствам и внешнему виду напоминает шерсть. Волокна в чистом виде и в смеси с шерстью используют для выработки платьево-костюмных тканей, искусственного меха, различных трикотажных изделий, гардинно-тюлевых изделий.

Поливинилхлоридное (ПВХ), хлориновое волокно вырабатывают из раствора поливинилхлоридной смолы в диметилформамиде (ПВХ) и из хлорированного поливинилхлорида. Эти волокна значительно отличаются от других синтетических волокон: в результате малой теплопроводности обладают высокой теплоизоляционной способностью, не горят, не гниют, очень стойки к химическим воздействиям.

Полиуретановые волокна. Обработкой полиуретановой смолы получают волокно спандекс или лайкра, вырабатываемое в виде мононити. Отличается высокой эластичностью, растяжимость его до 800 %. Применяется вместо резиновой жилки в производстве предметов женского туалета, высокорастяжимого трикотажа.

Алюнит — металлические нити из алюминиевой фольги, покрытые полимерной пленкой, защищающей металл от окисления. Для упрочнения алюнит скручивают с капроновыми нитями.

Аппаратная хлопчатобумажная пряжа — пушистая, рыхлая, толстая пряжа, получаемая из коротких волокон, характеризуется небольшой прочностью.

Аппаратная шерстяная пряжа — вырабатывается по аппаратной системе из коротковолокнистой шерсти и угаров (отходов прядильного производства) толщиной 42-500 текс, рыхлая, пушистая, неравномерная по толщине и прочности.

Армированная нить — текстильная нить, имеющая сложную структуру, состоящую из стержня оплетки, т. е. осевая нить обкручена или плотно оплетена волокнами или другими нитями.

Асбестовое волокно — минеральное волокно, содержится в горных породах. Наиболее длинные волокна (10 мм и более) перерабатываются в пряжу, идущую для изготовления технических тканей, лент, шнуров, используемых главным образом для теплоизоляции.

Ацетатное волокно — искусственное волокно, получают из растворов частично омыленной вторичной ацетилцеллюлозы в ацетате сухим способом (продавливание через фильеру и высушивание).

Вискозное волокно — искусственное волокно, вырабатываемое из древесной целлюлозы, переведенной путем химических преобразований в вязкую жидкость (вискозу), которая продавливается через фильеры и восстанавливается до гидрат-целлюлозы.

Восстановленная (регенированная) шерсть —дополнительный источник сырья для легкой промышленности. Получают из обрывков пряжи при прядении и ткачестве, из лоскутов шерстяных тканей и трикотажа в швейном производстве и утильного сырья (ткани и трикотажные изделия, бывшие в употреблении). Используют в небольших количествах (20-35%) в смеске с обычной шерстью и с добавлением 10-30% синтетического волокна для снижения себестоимости продукции.

Высокообъемная пряжа — пряжа, дополнительная объемность которой получена путем химической и/или тепловой обработки.

Гребенная хлопчатобумажная пряжа — тонкая, гладкая, ровная по толщине пряжа, получаемая из длинноволокнистого хлопка, характеризуется наибольшей прочностью.

Гребенная (камвольная) шерстяная пряжа — тонкая, гладкая, вырабатывается из длинноволокнистого шерстяного волокна по гребенной системе прядения, толщиной 15,5-42 текс.

Грубая шерсть — неоднородная шерсть, состоящая преимущественно из остевых волос толщиной 41 мкм и более. Получают при стрижке овец грубошерстных пород (кавказская, тушинская и др.).

Джут, кенаф — волокна, получаемые из стеблей растений тех же наименований, достигающих роста 3 м и более. В сухих стеблях содержится до 21% волокна, используемого для технических, упаковочных, мебельных тканей и ковров. Наибольшие посевные площади — в Индии, Бангладеше.

Извитое волокно — натуральное или химическое волокно, обладающее извитостью.

Искусственное волокно (нить) — химическое волокно (нить), изготовленное в результате производственного процесса из природных полимеров путем химической переработки.

Кардная хлопчатобумажная пряжа —толстая, неравномерная пряжа, получаемая из хлопка средней длины. Применяется для производства хлопчатобумажных тканей.

Комбинированная нить — текстильная нить, состоящая из комплексных нитей или мононитей, или из комплексных нитей, различающихся по химическому составу или структуре, различных по волокнистому составу и структуре.

Комплексная нить — текстильная нить, состоящая из двух или более продольно соединенных и скрученных элементарных волокон.

Креп-нить — характеризуется высокой (креповой) круткой. Для получения крепа натурального шелка скручивают 2-5 нитей шелка-сырца до 2200-3200 кр/м, а затем запаривают их для фиксации крутки. Креп из комплексных химических нитей получают скручиванием одной нити до 1500-200 кр/м. Благодаря высокой крутке ткани из креповых нитей характеризуются значительной упругостью, жесткостью, шероховатостью.

Крученая нить — текстильная нить, скрученная из одной и более текстильных нитей.

Крученая пряжа — текстильная нить, скрученная из двух и более пряж.

Лен — лубяное волокно, получаемое из стеблей растения того же наименования. На волокно культивируется лен-долгунец с длинным (до 1 м) и тонким (в диаметре 1-2 мм) стеблем.

Лубяное волокно — длинные прозенхимные клетки в стеблях различных растений, лишенные части содержимого растительного стебля. Волокна лубяных культур (льна, крапивы, конопли и др.) используют для выработки пряжи.

Льняная пряжа мокрого прядения — вырабатывается толщиной 24-200 текс из длинного волокна и очесов, при этом ровница (полуфабрикат льняного производства) — тонкая и равномерная по толщине перед прядением смачивается.

Льняная пряжа сухого прядения — вырабатывается из льняного волокна и очесов, неравномерная по толщине, толщиной 33-666 текс.

Люрекс — нить в виде блестящей узкой металлической полоски, покрытой фольгой, или металлизированной пленки.

Медноаммиачное волокно — вырабатывают из раствора целлюлозы в медно-аммиачном комплексе, по свойствам близко к вискозным. Производство ограничено, так как связано со значительным расходом меди (50 г на 1 кг волокна).

Многокруточная нить — крученая нить из двух и более текстильных нитей, одна из которых однокруточная, скрученных вместе за одну и более операций кручения.

Модифицированная нить (волокно) — текстильная нить (волокно) с заданными специфическими свойствами, полученная путем дополнительной химической или физической модификации.

Мооскреп — нить двойной крутки. Мооскреп из натурального шелка вырабатывают скручиванием креповой нити с 2-3 нитями шелка-сырца. Мооскреп из искусственных нитей получают трощением и последующим скручиванием креповой нити и нити пологой крутки. Второе скручивание производится в направлении креповой нити примерно на 200 кр/м. Креповая нить является стержневой, а нить шелка-сырца или нить пологой крутки — нагонной, обвивает стержневую.

Муслин — тонкая нить средней крутки. Муслин из натурального шелка получают скручиванием одной нити шелка-сырца до 1500-1800 кр/м, с последующей запаркой для фиксации крутки. Муслин из комплексной химической нити (вискозной, ацетатной, капроновой) получают скручиванием нити до 600-800 кр/м.

Мэрон (капроновые), мэлан (лавсановые) — растяжимые нити, получают как и высокорастяжимые нити, путем химической обработки, но с дополнительной термообработкой при некотором растяжении. В результате этого спиралеобразная извитость, характерная для эластика, переходит в синусоидальную и фиксируется в таком состоянии. Нити мягкие, пушистые, растяжимость 30-50%.

Натуральное волокно — текстильное волокно природного происхождения.

Натуральный шелк — продукт выделения шелкоотделительных желез гусениц-шелкопрядов — белкового вещества фиброина — в виде тонкой непрерывной нити, завитой в кокон. В момент образования кокона гусеницы выделяют две тонкие шелковины, которые при выходе на воздух застывают. Одновременно выделяется белковое вещество серицин, которое склеивает шелковины вместе.

Неоднородная нить — текстильная нить, состоящая из волокон разной природы.

Одиночная нить — нетрощеная, некрученая нить или нетрощеная крученая нить, получившая крутку за одну операцию кручения.

Однокруточная нить — крученая нить из двух или более одиночных нитей, скрученных вместе за одну операцию кручения.

Однородная нить — текстильная нить, состоящая из текстильных волокон одной природы.

Однородная пряжа — пряжа, состоящая из волокон одного вида.

Пенька — вырабатывается из однолетнего высокого растения конопли. Пеньку подразделяют на ниточную (тонкую), идущую для изготовления пряжи, техническую (толстую, грубую), из которой вырабатывают технические ткани, а также канатную — для канатов.

Переслежистая пряжа — пряжа с чередованием залетных утолщений и утонений.

Пленочная текстильная нить — плоская комплексная нить, полученная расщеплением текстильной пленки или экструдированием в виде полоски.

Полиакрилонитрильное волокно (нитрон) — синтетическое волокно, формуемое из растворов полиакрилонитрила или сополимеров, содержащих более 85% (по массе) акрилонитрила по мокрому или сухому методу. Выпускается под следующими торговыми названиями: орлон, акрилон (США), кашмилон (Япония), дралон (Германия) и др.

Полиамидное волокно — синтетическое волокно, формуемое из расплавов полиамидов. Производится из поликапролактама под следующими торговыми названиями: капрон (Россия), найлон (Япония), перлон, дедерон (Германия), амелан (Япония) и др.

Поливинилспиртовое волокно — синтетическое волокно, формуемое из растворов поливинилового спирта, выпускается во многих странах под следующими названиями: винол (Россия), винилон, куралон (Япония), виналон (КНДР) и др.

Поливинилхлоридное волокно — синтетическое волокно, формуемое из растворов поливинилхлорида, перхлорвиниловой смолы или сополимеров винилхлорида по сухому или мокрому методу; выпускается в виде непрерывных нитей или штапельных волокон под следующими торговыми названиями: хлорин, саран, виньон (США), ровиль (Франция), тевирон (Япония) и др.

Полинозное волокно — разновидность вискозного волокна с высокой степенью ориентации макромолекул в структуре и однородностью структуры в поперечном сечении, в результате чего оно имеют высокую прочность, низкое относительное удлинение.

Полипропиленовое волокно — синтетическое волокно, формуемое из расплава полипропилена. Используется для изготовления из-за низкой плотности нетонущих канатов, сетей, фильтровальных и обивочных материалов; штапельные полипропиленовые волокна — для выпуска одеял, тканей, для верхней одежды. Текстурированные (высокообъемные) полипропиленовые волокна находят применение главным образом в производстве ковров. Выпускаются под различными торговыми названиями: геркулон (США), ульстрен (Великобритания), найден (Япония), мераклон (Италия) и др.

Полиэфирное волокно (лавсан) — синтетическое волокно, формуемое из расплава полиэтилентерефталата (синтеза продуктов перегонки нефти). Техническую нить из полиэфирных волокон используют при изготовлении транспортерных лент, приводных ремней, канатов, парусов и т. д. Из моноволокна делают сетки для бумагоделательных машин, струны для ракеток и т. д. Методом “ложной крутки” получают высокообъемную нить.

Полугрубая шерсть — состоит из волокон переходного волоса и сравнительно тонких волокон ости толщиной 35-40 мкм. Получают ее от тонкорунно-грубошерстных овец (задонские, степные, волжские и др.).

Полутонкая шерсть — однородная шерсть, состоящая из грубых волокон, толщиной 25-35 мкм, относящихся к пуху или переходному волосу. Получают при стрижке полутонкорунных овец (прекосы, казахские, куйбышевские и др.).

Пряжа — текстильная нить, состоящая из волокон ограниченной длины (натуральных или штапельных химических), соединенных в длинную нить путем прядения (ориентации и скручивания волокон).

Пряжа с непсом — пряжа с впряденными включениями волокон другого цвета или вида.

Рами — волокно, вырабатываемое из многолетних трав и полукустарников семейства крапивных, содержащих в сухих стеблях до 21% прочного шелковистого волокна.

Руно — сплошной пласт, получаемый при стрижке овец, состоящий из прочно удерживающихся друг около друга пучков шерсти — штапелей.

Сиблон — модифицированное прочное вискозное волокно с однородными свойствами как внешних, так и внутренних слоев, достигаемыми регенерацией целлюлозы при низких температурах осадительной ванны и вытеканием волокна при высокой температуре (95 °С).

Синтетическое волокно (нить) — химическое волокно (нить), изготовленное из синтетических волокнообразующих полимеров (полиамид, полиэфир и др.).

Смешанная пряжа — пряжа, состоящая из двух или нескольких видов волокон.

Спандекс — полиуретановая мононить с высокой растяжимостью — до 700-800%.

Стеклянные нити — нити, получаемые при продавливании расплавленной стеклянной массы через тонкие отверстия. Вытекающие струйки, остывая, превращаются в гибкие нити. Основное применение — тепло- и электроизоляция, фильтры.

Суровая пряжа — пряжа без какой-либо отделки серожелтого цвета.

Текстильная лента (ровница) — совокупность продольно ориентированных штапельных волокон заданной линейной плотности без крутки, предназначенная для последующей механической обработки (вытягивание, скручивание).

Текстильная мононить (монофиламентная нить) — элементарная нить, используемая для непосредственного изготовления текстильных изделий.

Текстильная нить — текстильный продукт неограниченной длины и относительно малого поперечного сечения, состоящий из текстильных волокон и/или элементарных нитей, с круткой и без крутки.

Текстильное волокно — тонкое, гибкое, протяженное тело ограниченной длины, пригодное для изготовления пряжи и нитей.

Текстурированная нить — извитая текстильная нить, структура которой путем дополнительных обработок имеет повышенный удельный объем и растяжимость.

Термофиксированная нить (волокно) — текстильная нить (волокно), подвергнутая тепловой или термовлажностной обработке с целью приведения ее структуры в равновесное состояние.

Тонкорунная шерсть — однородная шерсть, состоящая только из волокон пуха, толщиной до 25 мкм, с мелкой равномерной извитостью, мягкая, эластичная, одинаковой длины. Ее получают от тонкорунных овец (мериносы, цигайские), используют для высококачественных тканей и трикотажных изделий.

Триацетатное волокно — получают из растворов триацетилцеллюлозы в смеси метиленхлорида и спирта сухим способом.

Трощеная нить — текстильная нить, состоящая из двух или более нитей, соединенных без скручивания.

Фасонная нить — текстильная нить, имеющая периодически повторяющиеся местные изменения структуры в виде узелков, петель и окраски.

Фибриллированная пленочная нить — пленочная текстильная нить с продольными рассечениями, имеющая поперечные связи между фибриллами. Фибриллы в данном случае являются элементами структуры, с тониной того же порядка, что и у текстильных волокон.

Химическое волокно (нить) — текстильное волокно (нить), полученное в результате производственного процесса из искусственных, синтетических полимеров или неорганических веществ.

Хлопок — волокна с поверхности семян хлопчатника — однолетнего кустарника, произрастающего в теплом климате. Различают хлопок длинноволокнистый (34-50 мм), средневолокнистый (24-35 мм) и коротковолокнистый (до 27 мм).

Хлопок-сырец — сырье хлопкоочистительных предприятий, содержит большое количество семян хлопка, покрытых хлопковым волокном, с примесями листьев, частей коробочек и др.

Шелковая пряжа — изготавливается из отходов натурального шелка (сдира бракованных коконов), которые очищаются от примесей, отвариваются и расщепляются на отдельные волокна (до 7 текс).

Шелк-основа — нить двойной крутки из 2-4 нитей шелка-сырца. Сначала нити шелка-сырца закручиваются влево на 400-600 кр/м, а затем 2-3 такие нити тростят и скручивают вправо на 480-600 кр/м. При вторичной обратной крутке первичная крутка несколько уменьшается, вследствие чего получается мягкая крученая нить.

Шелк-сырец — продукт разматывания коконов на специальных кокономотальных автоматах, где несколько (4-9) нитей, сложенных вместе, наматываются на мотовило.

Шелк-уток — нить пологой крутки, полученная скручиванием 2-5 и более нитей шелка-сырца пологой крутки (125 кручений на 1 м). Нить мягкая, ровная, гладкая, толщиной 9,1-7,1 текс.

Шерсть — волокна волосяного покрова различных животных: овец, коз, верблюдов и др.

Штапельное волокно — элементарное волокно ограниченной длины, которое получают путем резки жгута из химических волокон.

Штапельное волокно в массе — беспорядочная масса элементарных волокон ограниченной длины.

Эластик — (от греч. Elastos — гибкий, тягучий) высокорастяжимые текстурированные нити, обладающие большой (до 40%) растяжимостью, спиралеобразной извитостью и пушистостью. Получают на машинах “ложного кручения” путем придания нити крутки 2500-3000 кр/м и последующего снятия образовавшихся внутренних напряжений в термокамере (150-180 °С). В результате этого нить принимает форму спирали. Эластик используется для изготовления чулочно-носочных изделий.

Элементарная нить (филамент) — единичная текстильная нить практически неограниченной длины, рассматриваемая как бесконечная.

Элементарное волокно — текстильное волокно, представляющее собой единичный, неделимый элемент.

Натуральные волокна в зависимости от химического состава подразделяются на два подкласса: органические (растительного и животного происхождения) и м инеральные в олокна растительного происхождения: хлопок, лен, пенька, джут, кенаф, кендырь, рами, канатник, сизаль и др.

Волокна животного происхождения: шерсть овец, коз, верблюдов и других животных, натуральный шелк тутового и дубового шелкопряда.

К минеральным волокнам относится асбест,

Химические волокна делятся на два подкласса: искусственные и синтетические.

Искусственные волокна делятся на органические (вискозное волокно, ацетатное, триацетатное, медно-аммиачное, мти-лон В, сиблоновое, полинозное и др.) и неорганические (стеклянные и металлические волокна и нити).

Синтетические волокна в зависимости от природы исходных материалов делятся на полиамидные (капрон, анид, энант), полиэфирные (лавсан), полиакрилнитрильные (нитрон), полиоле-финовые (полипропилен, полиэтилен), полиуретановые (спан-декс), поливинилспиртовые (винол), поливинилхлоридные (хлорин), фторсодержащие (фторлон), а также полиформальдегид -ные, полибутилентерефталатные и др.

Искусственные волокна

Вискозное волокно — самое натуральное из всех химических волокон, получаемое из природной целлюлозы. В зави-симости от назначения вискозные волокна производят в виде нитей, а также штапельного (короткого) волокна с блестящей или матовой поверхностью. Волокно обладает хорошей гигроскопичностью (35-40%), светостойкостью и мягкостью. Недостатками вискозных волокон являются: большая потеря прочности в мокром состоянии, легкая сминаемость, недостаточная устойчивость к трению и значительная усадка при увлажнении. Эти недостатки устранены в модифицированных вискозных волокнах (полинозное, сиблон, мтилон), которым свойственны значительно более высокая прочность в сухом и мокром состоянии, большая износоустойчивость, меньшая усадка и повышенная несминаемость.

Сиблон, по сравнению с обычным вискозным волокном, имеет меньшую степень усадки, повышенные показатели несминаемости, прочности в мокром состоянии и устойчивости к щелочам. Мтилан обладает антимикробными свойствами и используется в медицине в качестве нитей для временного скрепления хирургических швов. Вискозные волокна применяются при производстве одежных тканей, бельевого и верхнего трикотажа как в чистом виде, так и в смеси с другими волокнами и нитями.

Ацетатные и триацетатные волокна получают из хлопковой целлюлозы. Ткани из ацетатных волокон внешне очень похожи на натуральный шелк, обладают высокой упругостью, мягкостью, хорошей драпируемостью, малой сминаемостью, способностью пропускать ультрафиолетовые лучи. Гигроскопичность меньше, чем у вискозы, поэтому электризуются. Ткани из триацетатного волокна имеют малую сминаемость и усадку, но теряют прочность в мокром состоянии. Благодаря высокой упругости ткани хорошо сохраняют форму и отделки (гофре и плиссе). Высокая термоустойчивость позволяет гладить ткани из ацетатных и триацетатных волокон при 150-160°С.

Рассказать друзьям