В чем заключается главная идея теории максвелла. Школьная энциклопедия

💖 Нравится? Поделись с друзьями ссылкой

1. Вихревое электрическое поле.

2. Ток смещения

3. Уравнения Максвелла для электромагнитного поля.

4. Электромагнитное поле. Электромагнитные волны. Энергетический спектр.

1. В проводящем контуре возникает индукционный ток, если поток вектора магнитной индукции, пронизывающий площадь, ограниченную контуром меняется во времени:

E i = - -З. Фарадея

Например, в контуре, находящемся в переменном м. поле. Силы Лоренца, в этом случае, не могут быть причиной возникновения тока, т.к. они действуют только на движущиеся заряды. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлениям Максвелла контур, в котором появляется ЭДС играет второстепенную роль являясь лишь индикатором, обнаруживающим это поле.

Итак, изменявшееся во времени магнитное поле порождает электрическое поле напряженностью Е в , циркуляция которого равна

Е В l – проекция вектора Е В на направления l .

Т.к. весь поток равен интегралу: Ф = и учитывая, что если поверхность и контур неподвижны, то операции интегрирования и дифференцирования можно поменять местами из выражение (13.1) получим:

Где символ частной производной подчеркивает тот факт, что интеграл является функцией только от времени.

Вспомним, что циркуляция вектора напряженности электростатического поля, создаваемого зарядом вдоль любого замкнутого контура = 0:

Т.е. между рассматриваемыми полями и имеется принципиальное различие: циркуляция ≠0 электродинамическое поле, порождаемое магнитным полем как и само магнитное поле является полем с замкнутыми силовыми линиями, т.е. вихревым электрическим полем .

2. Согласно Максвнллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющемся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения . Это название является условным, а точнее исторически сложившимся, так как ток смещения по своей сути - это изменяющееся со временем электрическое поле.

Рассмотрим цепь переменного тока, содержащую конденсатор. Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому согласно Мксвеллу, через конденсатор «протекают» токи смещения, причем в тех участках, где отсутствуют проводники. Токи проводимости и смещения при этом равны: I = I СМ. Ток проводимости вблизи обкладок будет:


Поверхностная плотность заряда s на обкладках равна электрическому смещению D в конденсаторе. А так как . Тогда плотность тока смещения согласно (13.4) будет: …(13.5)

Из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно – способность создавать в окружающем пространстве магнитное поле.

3. Введения понятия тока смещения привело Максвелла к созданию макроскопической теории электромагнитного поля, позволяющей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых в последствии было подтверж-дено. В основе теории Максвелла лежат четыре уравнения:

1). Электрическое поле может быть как потенциальным, так и вихревым (и ), поэтому напряженность суммарного поля:Е = +

Т.к. циркуляция = 0, а для определяется выражением (13.2), то циркуляция вектора напряженности суммарного поля :

DS….(1 )

Это уравнение показывает, что источниками электрического поля могут быть не только заряды, но и изменяющиеся во времени магнитные поля.

2). Обобщенная теорема о циркуляции вектора напряженности магнитного поля (): = dS…(2 )

где – вектор электрического смещения

– плотность тока, =

Это уравнение показывает, что магнитные поля могут возбуждаться либо зарядами, либо переменными электрическими полями.

3). Теорема Гаусса для электрического поля D (вектора электрического смещения). …(3 )

Т.е. поток вектора смещения электрического.поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов.

Где 0, 0 – электрическая и магнитная постоянные

,– электрическая и магнитная проницаемости

– удельная проводимость.

В результате изучения данной главы студент должен:

знать

  • эмпирические и теоретические основания теории электромагнитного поля;
  • историю создания теории электромагнитного поля, историю открытия давления света и электромагнитных волн;
  • физическую сущность уравнений Максвелла (в интегральной и дифференциальной формах);
  • основные этапы биографии Дж. К. Максвелла;
  • основные направления развития электродинамики после Дж. К. Максвелла;
  • достижения Дж. К. Максвелла в молекулярной физике и термодинамике;

уметь

  • оценивать роль Максвелла в развитии учения об электричестве и магнетизме, фундаментальное значение уравнений Максвелла, место книги «Трактат об электричестве и магнетизме» в истории науки, исторические опыты Г. Герца и П. Н. Лебедева;
  • обсуждать биографии крупнейших ученых, работавших в области электромагнетизма;

владеть

Навыками оперирования основными понятиями теории электромагнитного поля.

Ключевые термины: электромагнитное поле, уравнения Максвелла, электромагнитные волны, давление света.

Открытия Фарадея революционизировали науку об электричестве. С его легкой руки электричество начало завоевывать все новые позиции в технике. Заработал электромагнитный телеграф. В начале 70-х гг. XIX столетия он уже соединял Европу с США, Индией и Южной Америкой, появились первые генераторы электрического тока и электродвигатели, электричество начало широко использоваться в химии. Электромагнитные процессы все глубже вторгались в науку. Наступила эпоха, когда электромагнитная картина мира готова была сменить механическую. Нужен был гениальный человек, который смог бы, как в свое время Ньютон, объединить накопившиеся к этому времени факты и знания и на их основе создать новую теорию, описывающую основы нового мира. Таким человеком стал Дж. К. Максвелл.

Джеймс Клерк Максвелл (рис. 10.1) родился в 1831 г. Его отец-Джон Клерк Максвелл был человеком явно незаурядным. Адвокат по прорфессии, он, тем не менее, значительное время уделял другим, более интересным для него вещам: путешествовал, конструировал машины, ставил физические опыты, и даже опубликовал несколько научных статей. Когда Максвеллу исполнилось 10 лет, отец отправил его учиться в Эдинбургскую академию, где тот пробыл шесть лет - вплоть до поступления в университет. В возрасте 14 лет Максвелл написал первую научную работу, посвященную геометрии овальных кривых. Ее краткое изложение было опубликовано в «Трудах Эдинбургского королевского общества» за 1846 г.

В 1847 г. Максвелл поступил в Эдинбургский университет, где стал углубленно изучать математику. В это время еще две научные работы одаренного студента были опубликованы в «Трудах Эдинбургского королевского общества». С содержанием одной из них (о кривых качения) ознакомил общество профессор Келланд, другую (об упругих свойствах твердых тел) впервые представил сам автор.

В 1850 г. Максвелл продолжил образование в Питерхаусе - колледже Святого Петра Кембриджского университета, а оттуда перешел в колледж Святой Троицы - Тринити-колледж, давший миру И. Ньютона, а позже В. В. Набокова, Б. Рассела и др. В 1854 г. Максвелл выдерживает экзамен и получает степень бакалавра. Потом он был оставлен в Тринити-колледже в качестве преподавателя. Однако его больше волновали научные проблемы. В Кембридже Максвелл приступил к изучению цвета и цветного зрения. В 1852 г. он пришел к выводу, что смешение спектральных цветов не совпадает со смешением красок. Максвелл разрабатывает теорию цветового зрения, конструирует цветовой волчок (рис. 10.2).

Рис. 10.1.

Рис. 10.2.

Помимо его старых увлечений - геометрии и проблемы цветов, Максвелл заинтересовался электричеством. В 1854 г., 20 февраля, он пишет из Кембриджа письмо в Глазго У. Томсону. Вот начало этого знаменитого письма:

«Дорогой Томсон! Теперь, когда я вступил в нечестивое сословие бакалавров, я начал думать о чтении. Очень приятно иногда побыть среди заслуженно признанных книг, которые еще не читал, но должен прочитать. Но мы имеем сильное стремление вернуться к физическим предметам, и некоторые из нас здесь хотят атаковать электричество».

После окончания курса обучения Максвелл стал членом Тринити-колледжа Кембриджского университета, а в 1855 г. вошел в состав Эдинбургского королевского общества. Однако вскоре он покинул Кембридж и вернулся в родную Шотландию. Профессор Форбс известил его о том, что в Абердине, в Мари- шальском колледже открылась вакансия профессора физики, и у него имеются все шансы занять ее. Максвелл принял предложение и в апреле 1856 г. (в 24 года!) вступил в новую должность. В Абердине Максвелл продолжает трудиться над проблемами электродинамики. В 1857 г. он посылает М. Фарадею свою работу «О фарадеевских силовых линиях».

Из других трудов Максвелла в Абердине широкую известность получила его работа об устойчивости колец Сатурна. От изучения механики колец Сатурна совершенно естественным был переход к рассмотрению движений молекул газа. В 1859 г. Максвелл выступил на собрании Британской Ассоциации содействия развитию наук с докладом «О динамической теории газов». Этот доклад положил начало его плодотворным исследованиям в области кинетической теории газов и статистической физики.

В 1860 г. Максвелл принял приглашение Лондонского королевского колледжа и пять лет проработал там в звании профессора. Он не был блестящим лектором и не особенно любил читать лекции. Поэтому последовавший перерыв в преподавании был для него скорее желанным, чем досадным, и позволил полностью погрузиться в решение увлекательных проблем теоретической физики.

По мнению А. Эйнштейна, Фарадей и Максвелл сыграли в науке об электричестве те же роли, что Галилей и Ньютон в механике. Как Ньютон придал открытым Галилеем механическим эффектам математическую форму и физическое обоснование, так и Максвелл сделал это по отношению к фарадеевским открытиям. Максвелл придал идеям Фарадея строгую математическую форму, ввел термин «электромагнитное поле», сформулировал математические законы, описывающие это поле. Галилей и Ньютон заложили основы механической картины мира, Фарадей и Максвелл - электромагнитной.

Свои идеи об электромагнетизме Максвелл начал обдумывать с 1857 г., когда была написана уже упоминавшаяся статья «О фарадеевских силовых линиях». Здесь он широко использует гидродинамические и механические аналогии. Это позволило Максвеллу применить математический аппарат ирландского математика У. Гамильтона и выразить таким образом электродинамические соотношения математическим языком. В дальнейшем на смену гидродинамическим аналогиям приходят методы теории упругости: понятия деформации, давления, вихрей и т.п. Исходя из этого, Максвелл приходит к уравнениям поля, которые на этом этапе еще не были сведены к единой системе. Исследуя диэлектрики, Максвелл высказывает идею «тока смещения», а также, пока еще туманным образом, мысль о связи света и электромагнитного поля («электротонического состояния») в фарадеевской формулировке, которую Максвелл тогда использовал.

Эти идеи изложены в статьях «О физических линиях сил» (1861-1862). Они написаны в наиболее плодотворный лондонский период (1860-1865). Тогда же вышли знаменитые статьи Максвелла «Динамическая теория электромагнитного поля» (1864-1865), где были высказаны мысли о единой природе электромагнитных волн.

С 1866 по 1871 г. Максвелл прожил в своем родовом имении Миддлби, выезжая изредка в Кембридж на экзамены. Занимаясь хозяйственными делами, Максвелл не оставлял научных занятий. Он напряженно работал над главным трудом своей жизни «Трактатом об электричестве и магнетизме», написал книгу «Теория теплоты», ряд статей по кинетической теории газов.

В 1871 г. произошло важное событие. На средства потомков Г. Кавендиша в Кембридже была учреждена кафедра экспериментальной физики и начата постройка здания экспериментальной лаборатории, которая в истории физики известна как Кавендишская лаборатория (рис. 10.3). Максвелл был приглашен стать первым профессором кафедры и заведовать лабораторией. В октябре 1871 г. он прочел инаугурационную лекцию о направлениях и значении экспериментальных исследований в университетском образовании. Эта лекция стала программой обучения экспериментальной физике на долгие годы вперед. 16 июня 1874 г. Кавендишская лаборатория была открыта.

С тех пор лаборатория стала центром мировой физической науки на долгие десятилетия, такой же она является и сейчас. За сто с лишним лет через нее прошли тысячи ученых, среди которых множество тех, кто составил славу мировой физической науки. После Максвелла Кавендишской лабораторией заведовали многие выдающиеся ученые: Дж. Дж. Томсон, Э. Резерфорд, Л. Брэгг, Н. Ф. Мотт, А. Б. Пиппард и др.

Рис. 10.3.

После выхода «Трактата об электричестве и магнетизме», в котором была сформулирована теория электромагнитного поля, Максвелл решает в целях популяризации и распространения своих идей написать книгу «Электричество в элементарном изложении». Максвелл работал над книгой, но самочувствие его становилось все хуже. Он умер 5 ноября 1879 г., так и не став свидетелем триумфа своей теории.

Остановимся на творческом наследии ученого. Максвелл оставил глубокий след во всех областях физической науки. Недаром целый ряд физических теорий носят его имя. Он предложил термодинамический парадокс, много лет не дававший покоя физикам, - «демон Максвелла». В кинетическую теорию им были введены понятия, известные как: «распределение Максвелла» и «статистика Максвелла - Больцмана». Его перу также принадлежит изящное исследование устойчивости колец Сатурна. Кроме того, Максвелл создал множество небольших научных шедевров в самых разнообразных областях - от осуществления первой в мире цветной фотографии до разработки способа радикального выведения жировых пятен с одежды.

Перейдем к обсуждению теории электромагнитного поля - квинтэссенции научного творчества Максвелла.

Примечательно, что Джеймс Клерк Максвелл родился в тот самый год, когда Майкл Фарадей открыл явление электромагнитной индукции. На Максвелла особое впечатление произвела книга Фарадея «Экспериментальные исследования по электричеству».

Во времена Максвелла существовали две альтернативные теории электричества: теория «силовых линий» Фарадея и теория, разработанная французскими учеными Кулоном, Ампером, Био, Саваром, Араго и Лапласом. Исходное положение последней - представление о дальнодействии - мгновенной передачи взаимодействия от одного тела к другому без помощи какой-либо промежуточной среды. Реалистически мыслящий Фарадей не мог примириться с такой теорией. Он был абсолютно убежден в том, что «материя не может действовать там, где ее нет». Среду, через которую передается воздействие, Фарадей назвал «полем». Поле, считал он, пронизано магнитными и электрическими «силовыми линиями».

В 1857 г. в «Трудах Кембриджского философского общества» появилась статья Максвелла - «О фарадеевских силовых линиях». В ней была заложена вся программа исследований по электричеству. Отметим, что в этой статье уравнения Максвелла были уже написаны, но пока без тока смещения. Статья «О фарадеевских силовых линиях» требовала продолжения. Электрогидравлические аналогии дали многое. С их помощью были записаны полезные дифференциальные уравнения. Но не все удалось подчинить электрогидравлическим аналогиям. Никак не укладывался в их рамки важнейший закон электромагнитной индукции. Нужно было придумать новый вспомогательный механизм, облегчающий понимание процесса, отражающий одновременно и поступательное движение токов, и вращательный, вихревой характер магнитного поля.

Максвелл предложил особую среду, вихри в которой так малы, что умещаются внутри молекул. Вращающиеся «молекулярные вихри» производят магнитное поле. Направление осей вихрей молекул совпадает с их силовыми линиями, а сами они могут быть представлены как тонкие вращающиеся цилиндрики. Но внешние, соприкасающиеся части вихрей должны двигаться в противоположных направлениях, т.е. препятствовать взаимному движению. Как можно обеспечить вращение двух рядом расположенных шестеренок в одну сторону? Максвелл предположил, что между рядами молекулярных вихрей помещен слой мельчайших шарообразных частичек («холостых колес»), способных к вращению. Теперь вихри могли вращаться в одном направлении и взаимодействовать между собой.

Максвелл начал изучать также поведение своей механической модели в случае проводников и диэлектриков и пришел к выводу, что электрические явления могут происходить и в среде, препятствующей прохождению тока, - в диэлектрике. Пусть «холостые колеса» не могли в этих средах под действием электрического поля двигаться поступательно, но они при наложении и снятии электрического поля смещаются со своих положений. Большая научная смелость потребовалась Максвеллу, чтобы отождествить это смещение связанных зарядов с электрическим током. Ведь этого тока - тока смещения - никто еще не наблюдал. После этого Максвелл неизбежно должен был сделать следующий шаг - признать за этим током способность к созданию собственного магнитного поля.

Таким образом, механическая модель Максвелла позволяла сделать следующий вывод: изменение электрического поля приводит к появлению магнитного поля, т.е. к явлению, обратному фарадеевскому, когда изменение магнитного поля приводит к появлению поля электрического.

Следующая статья Максвелла, посвященная электричеству и магнетизму, - «О физических силовых линиях». Электрические явления потребовали для своего объяснения твердого, как сталь, эфира. Максвелл неожиданно оказался в роли О. Френеля, вынужденного «изобрести» для объяснения поляризационных явлений свой «оптический» эфир, твердый, как сталь, и проницаемый, как воздух. Максвелл отмечает сходство двух сред: «светоносной» и «электрической». Он постепенно приближается к своему великому открытию «единой природы» световых и электромагнитных волн.

В следующей статье - «Динамическая теория электромагнитного поля» - Максвелл впервые использовал термин «электромагнитное поле». «Теория, которую я предлагаю, может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические или магнитные тела, и она может быть названа также динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производятся наблюдаемые электромагнитные явления».

Когда Максвелл вывел в «Динамической теории электромагнитного поля» свои уравнения, одно из них свидетельствовало, казалось, именно о том, о чем говорил еще Фарадей: магнитные воздействия действительно распространялись в виде поперечных волн. Максвелл не заметил тогда еще, что из его уравнений следует больше: наряду с магнитным воздействием во все стороны распространяется электрическое возмущение. Электромагнитная волна в полном смысле этого слова, включающая одновременно и электрическое, и магнитное возмущения, появилась у Максвелла позже, уже в Миддлби, в 1868 г., в статье «О методе прямого сравнения электростатической силы с электромагнитной с замечанием по поводу электромагнитной теории света».

В Миддлби Максвелл завершал основной труд жизни - «Трактат об электричестве и магнетизме», впервые вышедший в свет в 1873 г. и впоследствии несколько раз переиздававшийся. Содержанием этой книги, конечно, были прежде всего статьи по электромагнетизму. В «Трактате» систематически даются основы векторного исчисления. Затем следуют четыре части: электростатика, электрокинематика, магнетизм, электромагнетизм.

Отметим, что метод исследования Максвелла резко отличается от методов других исследователей. Не только каждая математическая величина, но и каждая математическая операция наделяются глубоким физическим смыслом. В то же время каждой физической величине соответствует четкая математическая характеристика. Одна из глав «Трактата» называется «Основные уравнения электромагнитного поля». Здесь приведены основные уравнения электромагнитного поля из этого Трактата. Таким образом, с помощью векторного исчисления Максвелл более просто сделал то, что раньше проделал с помощью механических моделей, - вывел уравнения электромагнитного поля.

Рассмотрим физический смысл уравнений Максвелла. Первое уравнение говорит о том, что источниками магнитного поля являются токи и изменяющееся со временем электрическое поле. Гениальной догадкой Максвелла было введение им принципиально нового понятия - тока смещения - в качестве отдельного слагаемого в обобщенный закон Ампера - Максвелла:

где Н - вектор напряженности магнитного поля; j - вектор плотности электрического тока, в который Максвеллом добавлен ток смещения; D - вектор электрической индукции; с - некоторая постоянная.

Это уравнение выражает магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения.

Другой сразу завоевавшей признание Максвелла идеей стало представление Фарадея о природе электромагнитной индукции - возникновение индукционного тока в контуре, число магнитных силовых линий в котором изменяется или вследствие относительного движения контура и магнита, или вследствие изменения магнитного поля. Максвелл записал следующее уравнение:

где Ё - вектор напряженности электрического поля; В - век-

тор напряженности магнитного поля и, соответсвенно: - -

изменение магнитного поля во времени, с - некоторая постоянная.

Это уравнение отражает закон электромагнитной индукции Фарадея.

Необходимо учесть еще одно важное свойство векторов электрической и магнитной индукций Ё и В. В то время как электрические силовые линии начинаются и заканчиваются на зарядах, являющихся источниками поля, силовые линии магнитного поля замкнуты сами на себя.

В математике для обозначения характеристик векторного поля применяется оператор «дивергенции» (дифференцирования потока поля) - div. Пользуясь этим, Максвелл добавляет к двум имеющимся уравнениям еще два:

где р - плотность электрических зарядов.

Третье уравнение Максвелла выражает закон сохранения количества электричества, четвертое - вихревой характер магнитного поля (или отсутствие в природе магнитных зарядов).

Входящие в рассмотренные уравнения векторы электрической и магнитной индукции и векторы напряженностей электрического и магнитного полей связаны простыми соотношениями и могут быть записаны в виде следующих уравнений:

где е - диэлектрическая постоянная; р - магнитная проницаемость среды.

Кроме того, можно записать еще одно соотношение, связывающее вектор напряженности Ё и удельную проводимость у:

Для представления полной системы уравнений Максвелла необходимо записать еще граничные условия. Этим условиям должно удовлетворять электромагнитное поле на границе раздела двух сред.

где о - поверхностная плотность электрических зарядов; i - поверхностная плотность тока проводимости на рассматриваемой границе раздела. В частном случае, когда поверхностных токов нет, последнее условие переходит в:

Таким образом, Дж. Максвелл приходит к определению электромагнитного поля как вида материи, выражая все его проявления в виде системы уравнений. Отметим, что Максвелл не использовал векторных обозначений и записывал свои уравнения в достаточно громоздком компонентном виде. Современная форма уравнений Максвелла появилась около 1884 г. после работ О. Хевисайда и Г. Герца.

Уравнения Максвелла - одно из величайших достижений не только физики, но и цивилизации вообще. Они сочетают в себе строгую логичность, характерную для естественных наук, красоту и соразмерность, которой отличаются искусство и гуманитарные науки. Уравнения с максимально возможной точностью отражают сущность природных явлений. Потенциал уравнений Максвелла далеко не исчерпан, на их основе появляются все новые работы, объяснения новейших открытий в различных областях физики - от сверхпроводимости до астрофизики. Система уравнений Максвелла является основой современной физики, и до сих пор нет ни одного опытного факта, который бы противоречил этим уравнениям. Знание уравнений Максвелла, по крайней мере их физической сущности, - обязательно для любого образованного человека, не только физика.

Уравнения Максвелла явились предтечей новой неклассической физики. Хотя сам Максвелл по своим научным убеждениям был человеком «классическим» до мозга костей, написанные им уравнения принадлежали уже другой науке, отличной от той, которая была известна и близка ученому. Об этом свидетельствует хотя бы тот факт, что уравнения Максвелла неинвариантны относительно преобразований Галилея, однако они инвариантны относительно преобразований Лоренца, которые, в свою очередь, лежат в основе релятивистской физики.

На основании полученных уравнений Максвелл решил конкретные задачи: определил коэффициенты электрической проницаемости целого ряда диэлектриков, рассчитал коэффициенты самоиндукции, взаимоиндукции катушек и т.д.

Уравнения Максвелла позволяют сделать целый ряд важнейших выводов. Может быть главный из них - существование поперечных электромагнитных волн, распространяющихся со скоростью с.

Максвелл нашел, что неизвестное число с оказалось примерно равно отношению электромагнитной и электростатической единиц заряда, что составляет примерно 300 000 километров в секунду. Убежденный в универсальности своих уравнений, он показывает, что «свет есть электромагнитное возмущение». Признание конечной, хотя и очень большой, скорости распространения электромагнитного поля камня на камне не оставляло от теорий сторонников «мгновенного дальнодействия».

Важнейшим следствием электромагнитной теории света было предсказанное Максвеллом давление света. Ему удалось подсчитать, что в случае, когда в ясную погоду солнечный свет, поглощаемый плоскостью в один квадратный метр, дает 123,1 килограммометра энергии в секунду. Это означает, что он давит на эту поверхность в направлении своего падения с силой 0,41 миллиграмма. Таким образом, теория Максвелла укреплялась или рушилась в зависимости от результатов еще не осуществленных экспериментов. Существуют ли в природе электромагнитные волны со свойствами, подобными свету? Существует ли световое давление? Уже после смерти Максвелла на первый вопрос ответил Генрих Герц, на второй - Петр Николаевич Лебедев.

Дж. К. Максвелл - гигантская фигура в физической науке и как личность. В памяти людей Максвелл будет жить столько, сколько будет существовать человечество. Имя Максвелла увековечено в названии кратера на Луне. Самые высокие на Венере горы названы в честь великого ученого (горы Максвелла). Они поднимаются на 11,5 км над средним уровнем поверхности. Также его имя носит крупнейший в мире телескоп, который может работать в субмиллиметровом диапазоне (0,3-2 мм) -телескоп им. Дж. К. Максвелла (JCMT). Он расположен на Гавайских островах (США), на высокогорной местности Мауна Кеа (4200 м). Главное 15-метровое зеркало телескопа JCMT изготовлено из 276 отдельных алюминиевых фрагментов, плотно стыкованных вместе. Телескоп Максвелла используется для изучения Солнечной системы, межзвездной пыли и газа, а также далеких галактик.

После Максвелла электродинамика стала принципиально иной. Как же она развивалась? Отметим важнейшее направление развития - экспериментальное подтверждение основных положений теории. Но сама теория также требовала определенной интерпретации. В этом отношении необходимо отметить заслуги русского ученого Николая Алексеевича Умова, который заведовал кафедрой физики Московского университета с 1896 по 1911 г.

Николай Алексеевич Умов (1846-1915) - русский физик, родился в г. Симбирске (ныне Ульяновск), окончил Московский университет. Преподавал в Новороссийском университете (г. Одесса), а затем в Московском, где с 1896 г. после смерти А. Г. Столетова возглавлял кафедру физики.

Работы Умова посвящены различным проблемам физики. Главной из них было создание учения о движении энергии (вектор Умова), которое он изложил в 1874 г. в своей докторской диссертации. Умов бьи наделен высокой гражданской ответственностью. Вместе с другими профессорами (В. И. Вернадским, К. А. Тимирязевым,

Н. Д. Зелинским, П. Н. Лебедевым) он в 1911 г. покинул Московский университет в знак протеста против действий реакционно настроенного министра просвещения Л. А. Кассо.

Умов был активным пропагандистом науки, популяризатором научных знаний. Практически первым из ученых-физиков он понял необходимость серьезных и целенаправленных исследований методики преподавания физики. Большинство ученых-методистов старшего поколения - его ученики и последователи.

Основная заслуга Умова - разработка учения о движении энергии. В 1874 г. он получил общее выражение для вектора плотности потока энергии применительно к упругим средам и вязким жидкостям (вектор Умова). Через 11 лет английский ученый Джон Генри Пойнтинг (1852-1914) сделал то же самое для потока электромагнитной энергии. Так в теории электромагнетизма появился известный вектор Умова - Пойнтинга.

Пойнтинг был одним из тех ученых, кто сразу принял теорию Максвелла. Нельзя сказать, что таких ученых было достаточно много, что понимал и сам Максвелл. Теория Максвелла не сразу была понята даже в созданной им Кавендишской лаборатории. Тем не менее с появлением теории электромагнетизма познание природы поднялось на качественно иной уровень, который, как это всегда бывает, все сильнее удаляет нас от непосредственных чувственных представлений. Это - нормальный закономерный процесс, сопровождающий все развитие физики. История физики дает множество подобных примеров. Достаточно вспомнить положения квантовой механики, специальной теории относительности, других современных теорий. Так и электромагнитное поле во времена Максвелла едва ли было доступно пониманию людей, в том числе научной среды, и тем более не доступно для их чувственного восприятия. Тем не менее после экспериментальных работ Герца возникли идеи о создании беспроволочной связи при помощи электромагнитных волн, завершившиеся изобретением радио. Таким образом, возникновение и развитие техники радиосвязи превратило электромагнитное поле в известное и привычное для всех понятие.

Решающую роль в победе теории электромагнитного поля Максвелла сыграл немецкий физик Генрих Рудольф Герц. Интерес Герца к электродинамике был стимулирован Г. Л. Гельмгольцем, который, считая необходимым «упорядочить» эту область физики, предложил Герцу заняться процессами в незамкнутых электрических цепях. Сначала Герц отказался от темы, но затем, работая в Карлсруэ, обнаружил там устройства, которые можно было использовать для подобных исследований. Это и предопределило его выбор, тем более что сам Герц, хорошо зная теорию Максвелла, был полностью подготовлен к подобным исследованиям.

Генрих Рудольф Герц (1857-1894) - немецкий физик, родился в 1857 г. в Гамбурге в семье адвоката. Учился в Мюнхенском университете, а затем - в Берлинском у Г. Гельмгольца. С 1885 г. Герц работает в Высшей технической школе в Карлсруэ, где начинаются его исследования, приведшие к открытию электромагнитных волн. Они были продолжены в 1890 г. в Бонне, куда Герц переехал, сменив на посту профессора экспериментальной физики Р. Клаузиуса. Здесь он продолжает заниматься электродинамикой, однако постепенно его интересы смещаются к механике. Умер Герц 1 января 1894 г. в расцвете таланта в возрасте 36 лет.

К началу работ Герца электрические колебания были уже довольно подробно изучены. Уильямом Томсоном (лордом Кельвином) было получено выражение, которое теперь известно каждому школьнику:

где Т - период электрических колебаний; А - индуктивность, которую Томсон называл «электродинамической емкостью» проводника; С - емкость конденсатора. Формула получила подтверждение в экспериментах Беренда Вильгельма Феддерсена (1832-1918), который изучал колебания искрового разряда лейденской банки.

В статье «О весьма быстрых электрических колебаниях» (1887) Герц приводит описание своих опытов. Их суть поясняет рисунок 10.4. В окончательном виде используемый Герцем колебательный контур представлял собой два проводника СиС", расположенные на расстоянии около 3 м друг от друга и соединенные медной проволокой, в середине которой находился разрядник В индукционной катушки. Приемник представлял собой контур acdb с размерами 80 х 120 см, с искровым промежутком М в одной из коротких сторон. Детектирование определялось по наличию слабой искры в разряднике М. Проводники, с которыми экспериментировал Герц, это, говоря современным языком, антенна с детектором. Они теперь носят названия вибратора и резонатора Герца.


Рис. 10.4.

Суть полученных результатов состояла в том, что электрическая искра в разряднике В вызывала искру в разряднике М. Сначала Герц, объясняя опыты, не говорит о максвелловских волнах. Он говорит лишь о «взаимодействии проводников» и пытается искать объяснение в теории дальнодействия. Проводя эксперименты, Герц обнаружил, что на малых расстояниях характер распространения «электрической силы» аналогичен полю диполя, а далее она убывает медленнее и имеет угловую зависимость. Мы бы сейчас сказали, что разрядник обладает анизотропной диаграммой направленности. Это, конечно, в корне противоречит теории дальнодействия.

Проанализировав результаты экспериментов и проведя собственные теоретические исследования, Герц принимает теорию Максвелла. Он приходит к выводу о существовании электромагнитных волн, распространяющихся с конечной скоростью. Теперь уравнения Максвелла - это уже не абстрактная математическая система и их следует привести к такому виду, чтобы ими было удобно пользоваться.

Герц получил экспериментально предсказанные теорией Максвелла электромагнитные волны и, что не менее важно, доказал их тождество со светом. Для этого нужно было доказать, что с помощью электромагнитных волн можно наблюдать известные эффекты оптики: преломление и отражение, поляризацию и т.д. Герц выполнил эти исследования, потребовавшие виртуозного экспериментального мастерства: он провел эксперименты по распространению, отражению, преломлению, поляризации открытых им электромагнитных волн. Он построил зеркала для опытов с этими волнами (зеркала Герца), призму из асфальта и т.п. Зеркала Герца показаны на рис. 10.5. Опыты показали полную тождественность наблюдавшихся эффектов с теми, что были хорошо известны для световых волн.

Рис. 10.5.

В 1887 г. в работе «О влиянии ультрафиолетового света на электрический разряд» Герц описывает явление, которое затем стали называть внешним фотоэффектом. Он обнаружил, что при облучении ультрафиолетовыми лучами электродов, находящихся под высоким напряжением, разряд возникает на большем расстоянии между электродами, чем без облучения.

Данный эффект затем всесторонне исследовал русский ученый Александр Григорьевич Столетов (1839-1896).

В 1889 г. на съезде немецких естествоиспытателей и врачей Герц прочел доклад «О соотношении между светом и электричеством», в котором выразил мнение относительно огромной важности теории Максвелла, теперь уже подтвержденной опытами.

Опыты Герца произвели фурор в научном мире. Их многократно повторяли и варьировали. Одним из тех, кто это делал, был Петр Николаевич Лебедев. Он получил самые короткие на тот момент электромагнитные волны и в 1895 г. проделал с ними опыты по двойному лучепреломлению. В своей работе Лебедев поставил задачу постепенного уменьшения длины волны электромагнитного излучения с тем, чтобы в конце концов сомкнуть их с длинными инфракрасными волнами. Самому Лебедеву этого сделать не удалось, однако это осуществили в 20-х годах XX столетия русские ученые Александра Андреевна Глаголева-Аркадьева (1884-1945) и Мария Афанасьевна Левицкая (1883-1963).

Петр Николаевич Лебедев (1866-1912) - русский физик, родился в 1866 г. в Москве, закончил Страсбургский университет и в 1891 г. начал работать в Московском университете. Лебедев остался в истории физики как экспериментатор-виртуоз, автор исследований, выполненных скромными средствами на грани технических возможностей того времени, а также как основатель общепризнанной научной школы в Москве, откуда вышли известные русские ученые П. П. Лазарев, С. И. Вавилов, А. Р. Колли и др.

Лебедев умер в 1912 г. вскоре после того, как он вместе с другими профессорами покинул Московский университет в знак протеста против действий реакционно настроенного министра просвещения Л. А. Кассо.

Однако главная заслуга Лебедева перед физикой - в том, что он экспериментально измерил предсказанное теорией Максвелла световое давление. Изучению этого эффекта Лебедев посвятил всю жизнь: в 1899 г. был поставлен эксперимент, доказавший наличие давления света на твердые тела (рис. 10.6), а в 1907 г. - на газы. Работы Лебедева по световому давлению стали классическими, они являются одной из вершин эксперимента конца XIX - начала XX в.

Опыты Лебедева по световому давлению принесли ему мировую славу. По этому поводу У. Томсон говорил «Я всю жизнь воевал с Максвеллом, не признавая его светового движения, а вот... Лебедев заставил меня сдаться перед его опытами».

Рис. 10.6.

Опыты Герца и Лебедева окончательно утвердили приоритет теории Максвелла. Что же касается практики, т.е. практического применения законов электромагнетизма, то к началу XX в. человечество уже жило в мире, в котором электричество стало играть огромную роль. Этому способствовала бурная изобретательская деятельность в области применения открытых физиками электрических и магнитных явлений. Отметим некоторые из таких изобретений.

Одним из первых применений электромагнетизм нашел в технике связи. Телеграф существовал уже с 1831 г. В 1876 г. американский физик, изобретатель и предприниматель Александр Белл (1847-1922) изобрел телефон, который затем был усовершенствован знаменитым американским изобретателем Томасом Алва Эдисоном (1847-1931).

В 1892 г. английский физик Уильям Крукс (1832-1912) сформулировал принципы радиосвязи. Русский физик Александр Степанович Попов (1859-1906) и итальянский ученый Гулъелъмо Маркони (1874-1937) фактически одновременно применили их на практике. Обычно возникает вопрос о приоритете данного изобретения. Попов несколько раньше продемонстрировал возможности созданного им устройства, но не запатентовал его, как это сделал Маркони. Последнее и определило бытующую на Западе традицию считать Маркони «отцом» радио. Этому способствовало присуждение ему Нобелевской премии в 1909 г. Попов, по всей видимости, также был бы среди лауреатов, однако его к тому времени уже не было в живых, а Нобелевская премия присуждается только здравствующим ученым. Подробнее об истории изобретения радио будет рассказано в части VI книги.

Электрические явления пытались использовать для освещения еще в XVIII в. (вольтова дуга), в дальнейшем этот прибор был усовершенствован Павлом Николаевичем Яблочковым (1847-1894), который в 1876 г. изобрел первый пригодный для практического применения электрический источник света (свечу Яблочкова) . Она, однако, не нашла широкого применения, в первую очередь потому, что в 1879 г. Т. Эдисоном была создана лампа накаливания достаточно долговечной конструкции и удобная для промышленного изготовления. Отметим, что изобретена лампа накаливания был еще в 1872 г. русским электротехником Александром Николаевичем Лодыгиным (1847- 1923).

Контрольные вопросы

  • 1. Какие исследования выполнил Максвелл, работая в Маришальском колледже? Какую роль сыграл Максвелл в развитии учения об электричестве и магнетизме?
  • 2. Когда была организована Кавендишская лаборатория? Кто стал ее первым директором?
  • 3. Какой закон не удавалось описать с помощью электрогидравли- ческих аналогий?
  • 4. С помощью какой модели Максвелл пришел к выводу о существовании тока смещения и явления магнитоэлектрической индукции?
  • 5. В какой статье Максвелл впервые использовал термин «электромагнитное поле»?
  • 6. Как записывается система уравнений, составленная Максвеллом?
  • 7. Почему уравнения Максвелла считаются одним из триумфальных достижений человеческой цивилизации?
  • 8. Какие выводы сделал Максвелл из теории электромагнитного поля?
  • 9. Как развивалась электродинамика после Максвелла?
  • 10. Как Герц пришел к выводу о существовании электромагнитных волн?
  • 11. В чем состоит главная заслуга Лебедева перед физикой?
  • 12. Как теория электромагнитного поля используется в технике?

Задания для самостоятельной работы

  • 1. Дж. К. Максвелл. Биография и научные достижения в электродинамике и других областях физики.
  • 2. Эмпирические и теоретические основания теории электромагнитного поля Максвелла.
  • 3. История создания уравнений Максвелла.
  • 4. Физическая сущность уравнений Максвелла.
  • 5. Дж. К. Максвелл - первый директор Кавендишской лаборатории.
  • 6. Как записывается в настоящее время система уравнений Максвелла: а) в интегральной форме; б) в дифференциальной форме?
  • 7. Г. Герц. Биография и научные достижения.
  • 8. История обнаружения электромагнитных волн и их идентификации со светом.
  • 9. Опыты П. Н. Лебедева по обнаружению светового давления: схема, задачи, трудности и значение.
  • 10. Работы А. А. Глаголевой-Аркадьевой и М. А. Левицкой по генерации коротких электромагнитных волн.
  • 11. История открытия и исследования фотоэффекта.
  • 12. Развитие электромагнитной теории Максвелла. Работы Дж. Г. Пойн- тинга, Н. А. Умова, О. Хевисайда.
  • 13. Как был изобретен и усовершенствован электрический телеграф?
  • 14. Исторические этапы развития электро- и радиотехники.
  • 15. История создания осветительных приборов.
  • 1. Кудрявцев, П. С. Курс истории физики. - 2-е изд. - М. : Просвещение, 1982.
  • 2. Кудрявцев, П. С. История физики: в 3 т. - М. : Просвещение, 1956-1971.
  • 3. Спасский, Б. И. История физики: в 2 т. - М.: Высшая школа, 1977.
  • 4. Дорфман, Я. Г. Всемирная история физики: в 2 т. - М. : Наука, 1974-1979.
  • 5. Голин, Г. М. Классики физической науки (с древнейших времен до начала XX в.) / Г. М. Голин, С. Р. Филонович. - М. : Высшая школа, 1989.
  • 6. Храмов, Ю. А. Физики: биографический справочник. - М.: Наука, 1983.
  • 7. Виргинский, В. С. Очерки истории науки и техники в 1870-1917 гг. / В. С. Виргинский, В. Ф. Хотеенков. - М.: Просвещение, 1988.
  • 8. Витковски, Н. Сентиментальная история науки. - М.: КоЛибри, 2007.
  • 9. Максвелл, Дж. К. Избранные сочинения по теории электромагнитного поля. - М.: ГИТТЛ, 1952.
  • 10. Кузнецова, О. В. Максвелл и развитие физики XIX-XX веков: сб. статей / отв. ред. Л. С. Полак. - М.: Наука, 1985.
  • 11. Максвелл, Дж. К. Трактат об электричестве и магнетизме: в 2 т. - М.: Наука, 1989.
  • 12. Карцев, В. П. Максвелл. - М.: Молодая гвардия, 1974.
  • 13. Нивен, У. Жизнь и научная деятельность Дж. К. Максвелла: краткий очерк (1890) // Дж. К. Максвелл. Материя и движение. - М.: Ижевск: РХД, 2001.
  • 14. Harman, Р. М. The natural philosophy of James Clerk Maxwell. - Cambridge: University Press, 2001.
  • 15. Болотовский, Б. M. Оливер Хевисайд. - M.: Наука, 1985.
  • 16. Горохов, В. Г. Становление радиотехнической теории: от теории к практике на примере технических следствий из открытия Г. Герца // ВИЕТ. - 2006. - № 2.
  • 17. Книжные серии «ЖЗЛ»: «Люди науки», «Творцы науки и техники».

Обобщив основные экспериментальные законы электри- чества и магнетизма, Максвелл создал единую теорию электромагнитного поля. В электродинамике теория Максвел- ла играет ту же роль, что и законы Ньютона в классической механике. Она позволила не только объяснить с единых позиций уже известные факты, но и предсказать существо- вание электромагнитных волн.

Принципиально новой идеей, выдвинутой Максвеллом, была идея о взаимных превращениях электрических и магнитных полей. Обобщая закон Фарадея для электро- магнитной индукции, Максвелл предположил, что изменяю- щееся магнитное поле порождает вихревое электрическое поле , циркуляция вектора напряженности которого определяется уравнением

. (3.1)

В свою очередь, следует ожидать, что изменяющееся во времени электрическое поле, должно создавать переменное магнитное поле. Для установления количествен- ной связи между изменяющимся электрическим и вызванным им магнитным полями, Максвелл ввел понятие тока смещения. Рассматривая конденсатор в цепи переменного тока, он предположил, что ток проводимости замыкается в конденсаторе током смещения. Ток смещенияпредставляет собой изменяющееся электрическое поле и не сопровожда- ется движением электрических зарядов, но он способен создавать магнитное поле, как и ток проводимости. Плотность тока смещения равна

, (3.2)

где - вектор электрического смещения.

Сумму тока проводимости и тока смещения называют полным током , его плотность равна

. (3.3)

Введение полного тока позволяет обобщить теорему о циркуляции напряженности магнитного поля, представив ее в виде

(3.4)

Из данного уравнения следует, что магнитное поле может возбуждаться не только движущимися зарядами, но и изменениями электрического поля, подобно тому, как электрическое поле может возбуждаться не только электри- ческими зарядами, но и изменениями магнитного поля.

К рассмотренным уравнениям (3.1 и 3.4) Максвелл добавил еще два уравнения, выражающие теорему Гауcса для векторов и электромагнитного поля

(3.5)

. (3.6)

Тема: Основы теории Максвелла для электромагнитного поля

1. Общая характеристика теории Максвелла для электромагнитного поля.

Ток смещения

2. Закон полного тока по Максвеллу

3. Максвелловская трактовка явления электромагнитной индукции

4. Система уравнений Максвелла в интегральной форме для магнитного поля

    Общая характеристика теории Максвелла для электромагнитного поля. Ток смещения

На предыдущих лекциях мы рассматривали основные законы электрических и магнитных явлений. Эти законы, как мы видели, являются обобщением экспериментальных фактов. При этом они описывали отдельно электрические и магнитные явления. В 60-х годах прошлого столетия Максвелл, основываясь на идеях Фарадея об электрических и магнитных полях, обобщил эти законы и разработал законченную теорию единого электромагнитного поля.

Теория Максвелла является макроскопической теорией. В ней рассматриваются электрические и магнитные поля, создаваемые макроскопическими зарядами и токами без учета внутренних механизмов, связанных с колебаниями атомов или электронов . Поэтому, расстояния от источников полей до рассматриваемых точек пространства предполагается много большими по сравнению с размерами молекул. Кроме того, частота колебаний электрических и магнитных полей в этой теории, принимается много меньшей частоты внутримолекулярных колебаний. В работах Максвелла идея Фарадея о тесной связи электрических и магнитных явлений получила окончательное оформление в виде двух основных положений и была в строгой форме выражена в виде уравнений Максвелла.(1873).

Основные достижения теории Максвелла – обоснования идеи о том, что:

Переменное электрическое поле возбуждает вихревое магнитное поле;

Переменное магнитное поле возбуждает вихревое электрическое поле.

Ток смещения

Анализируя различные электромагнитные процессы, Максвелл пришел к заключению, что всякое изменение электрического поля должно вызывать появление магнитного поля. Это утверждение является одним из основных положений теории Максвелла и выражает важнейшее свойство электромагнитного поля.

Рассмотрим такой опыт: между пластинами плоского конденсатора, заряженного с поверхностной плотностью заряда , поместим диэлектрик.

Электрическое поле внутри конденсатора однородно и вектор электрической индукции равен:

Соединим обкладки конденсатора внешним проводником. Так как между обкладками конденсатора существует разность потенциалов, то по проводнику пойдет ток: . У границ пластин линии тока перпендикулярны их поверхности и плотность тока равна:

(2) если , то .

С учетом формулы (1) получим формулу для плотности тока проводимости

По мере разряда конденсатора электрическое поле в нем ослабевает. Следовательно, производная от индукции будет иметь отрицательный знак, и вектор будет направлен противоположно . Т.е. направление вектора будет совпадать с направлением вектора плотности тока. Поэтому формулу (3) можно записать в векторной форме:

Левая часть равенства (4) характеризует электрический ток проводимости, а правая часть характеризует скорость изменения электрического поля в диэлектрике. Равенство этих двух векторов на границе металл – диэлектрик показывает, что линии вектора как бы продолжают линии тока через диэлектрик и замыкают ток. Поэтому производная от электрической индукции по времени названа Максвеллом плотностью тока смещения

Итак, в рассмотренном опыте ток проводимости переходит в диэлектрике в ток смещения (т.е. в изменяющееся электрическое поле).

Если использовать формулу связи между индукцией , напряженностью и поляризованностью Р вещества, то для плотности тока смещения можно получить следующую формулу:

. (6)

Первое слагаемое правой части формулы (6) определяет переменное поле свободных зарядов (переменное электрическое поле в вакууме). Второе слагаемое представляет собой быстроту изменения поляризованности диэлектрика со временем, связанное со смещением его зарядов при изменении напряженности поля. Движение зарядов в электрическом поле в пределах молекулярных размеров является упорядоченным и называется поляризационной составляющей тока смещения. Этим объясняется происхождение термина ток смещения – ток, обусловленный смещением зарядов в диэлектрике, помещенном в переменное электрическое поле .

При переполяризации молекулы «поворачиваются» за изменяющимся полем и сталкиваются с соседними молекулами. Вследствие таких столкновений диэлектрик нагревается. Т.о. ток смещения можно регистрировать по его тепловому действию . Кроме того, как любой ток, ток смещения создает магнитное поле . Непосредственное наблюдение магнитного поля, порождаемого током смещения, было осуществлено Российским ученым Эйхенвальдом.

В его опыте диск из диэлектрика помещался между обкладками двух плоских конденсаторов, и вращался вокруг оси . Обкладки конденсаторов соединялись с источником напряжения так, что половины диэлектрика поляризовались в противоположных направлениях. При каждом обороте диска направление поляризации каждой из частей изменяется на противоположное. В результате такой переполяризации диэлектрика при его вращении в нем возникает поляризационный ток, направленный параллельно оси вращения. Магнитное поле этого тока обнаруживалось по отклонению магнитной стрелки, помещенной вблизи оси диска.

2. Закон полного тока для магнитного поля по Максвеллу

В общем случае токи проводимости и ток смещения не разделены в пространстве, как это имеет место в конденсаторе. Все типы токов могут существовать в одном и том же объеме и можно говорить о полном токе , равном сумме токов проводимости (макротоков) и тока смещения . В интегральной форме для полного тока можно записать

В зависимости от электропроводности среды и частоты колебаний электрического поля оба слагаемых в формуле (7) вносят разный вклад в значение полного тока. В хорошо проводящих веществах (металлах) и при низких частотах током смещения можно пренебречь по сравнению с током проводимости. В проводниках ток смещения проявляется при высоких частотах. Напротив, в плохо проводящих средах (диэлектриках) ток смещения играет основную роль. Здесь следует отметить практическое использование тока смещения для индукционной закалки материалов.

Оба слагаемых в формуле (7) могут иметь, как одинаковые, так и противоположные знаки. Так, что полный ток может быть как больше, так и меньше тока проводимости.

С учетом наличия в среде тока смещения, закон полного тока для магнитного поля в веществе по Максвеллу записывается в следующем виде

Формула (8) закона полного тока по Максвеллу отличается от полученных ранее формул тем, что позволяет перейти к описанию переменных электрических и магнитных полей .

3. Фарадеевская и Максвелловская трактовки явления электромагнитной индукции

Если проводящий контур поместить в переменное магнитное поле, то в нем возникнет э.д.с. Это явление называется электромагнитной индукцией и описывается законом Фарадея

Учитывая, что и запишем закон электромагнитной индукции в другой форме

, или . (10)

Объясняя явление электромагнитной индукции, Фарадей предполагал, что переменное магнитное поле создает в проводящем контуре вихревое электрическое поле.

Максвелл обобщил этот результат и дал свою трактовку электромагнитной индукции:

переменное магнитное поле создает в любой точке пространства вихревое электрическое поле независимо от наличия в нем проводника .

4. Уравнения Максвелла для электромагнитного поля в интегральной форме

Обобщив полученные ранее соотношения на случай переменных полей, Максвелл получил систему уравнений

-закон электромагнитной индукции

Закон полного тока

- теорема Гаусса для электрического поля

- теорема Гаусса для магнитного поля

Связь электрической индукции с напряженностью

Связь магнитной индукции с напряженностью

Закон Ома в дифференциальной форме

5. Следствия из уравнений Максвелла

Из уравнений Максвелла вытекает ряд важных следствий.

1. Из первого уравнения следует, что источником электрического поля могут быть не только электрические заряды, но и переменное магнитное поле.

Переменное магнитное поле может порождать вихревое электрическое поле не только в проводнике, но и в вакууме .

2. Из второго уравнения следует, что магнитное поле может быть возбуждено как макротоком (электрическим током проводимости), так и током смещения. Возбуждение происходит по одному и тому же закону. Поэтому эти два фактора неразличимы. При этом в области поля, где нет макротоков, уравнение имеет вид

Т.е. магнитное поле может порождаться только током смещения. Причем, в отсутствие поляризационной составляющей тока смещения магнитное поле может порождаться переменным электрическим полем в вакууме. Последнее является одним из важнейших следствий теории Максвелла. Основываясь на этом, Максвелл теоретически предсказал существование электромагнитных волн. Качественно возникновение волны можно пояснить с помощью рисунка. Переменное электрическое поле, возникшее в одном месте, порождает магнитное поле, которое в свою очередь порождает электрическое поле и т.д. Так возникает переменное электромагнитное поле, которое распространяется в пространстве в виде электромагнитной волны со скоростью света. Дальнейшие теоретические исследования свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света. В электромагнитной волне векторы Е и Н колеблются в одинаковой фазе.

Вопросы для самопроверки:

    Что называется током смещения? В чем проявляется ток смещения?

    Какой вид имеет закон полного тока для магнитного поля по Максвеллу?

    В чем состоит отличие максвелловской трактовки явления электромагнитной индукции от трактовки Фарадея?

    Перечислить основные следствия из уравнений Максвелла.

Сейчас практически каждый человек знает, что электрическое и магнитное поля непосредственно взаимосвязаны друг с другом. Даже существует особый раздел физики, изучающий электромагнитные явления. Но еще в 19 веке, пока не была сформулирована электромагнитная теория Максвелла, все было совершенно иначе. Считалось, например, что электрические поля присущи лишь частицам и телам, обладающим а магнитные свойства - совершенно другая область науки.

В 1864 году знаменитый британский физик Д. К. Максвелл указывает на прямую взаимосвязь электрических и магнитных явлений. Открытие получило название «теория электромагнитного поля Максвелла». Благодаря ей удалось решить ряд неразрешимых, с точки зрения электродинамики того времени, вопросов.

Большинство громких открытий всегда основывается на результатах работ предыдущих исследователей. Теория Максвелла - не исключение. Отличительной чертой является то, что Максвелл существенно расширил результаты, полученные его предшественниками. К примеру, он указал, что в может использоваться не только замкнутый контур из проводящего материала, но состоящий из любого материала. В данном случае контур является индикатором вихревого электрического поля, которое воздействует не только на металлов. При такой точке зрения при нахождении в поле диэлектрического материала более правильно говорить о токах поляризации. Они также совершают работу, которая заключается в нагреве материала до определенной температуры.

Первое подозрение на связь электрических и появилось в 1819 году. Х. Эрстед заметил, что если вблизи проводника с током расположить компас, то направление стрелки отклоняется от

В 1824 году А. Ампер сформулировал закон взаимодействия проводников, впоследствии получивший название «Закон Ампера».

И, наконец, в 1831 году Фарадей зафиксировал появление тока в контуре, находящемся в изменяющемся магнитном поле.

Теория Максвелла призвана решить основную задачу электродинамики: при известном пространственном распределении электрических зарядов (токов) можно определить некоторые характеристики генерируемых магнитных и электрических полей. Данная теория не рассматривает сами механизмы, лежащие в основе происходящих явлений.

Теория Максвелла предназначена для близкорасположенных зарядов, так как в системе уравнений считается, что происходят со вне зависимости от среды. Важной особенностью теории является тот факт, что на ее основании рассматриваются такие поля, которые:

Генерируются относительно большими токами и зарядами, распределенными в большом объеме (во много раз превышающем размер атома или молекулы);

Переменные магнитные и электрические поля изменяются быстрее, чем период процессов внутри молекул;

Расстояние между рассчитываемой точкой пространства и источником поля превышает размер атомов (молекул).

Все это позволяет утверждать, что теория Максвелла применима прежде всего к явлениям макромира. Современная физика все больше процессов объясняет с точки зрения квантовой теории. В формулах Максвелла квантовые проявления не учитываются. Тем не менее использование максвелловских систем уравнений позволяет успешно решать определенный круг задач. Интересно, что так как учитываются плотности электрических токов и зарядов, то теоретически возможно существование их же, но магнитной природы. На это в 1831 году указал Дирак, обозначив их магнитными монополями. В целом основные постулаты теории следующие:

Магнитное поле создается переменным электрическим полем;

Переменное магнитное поле генерирует электрическое поле вихревой природы.

Рассказать друзьям