Закон преломления света: формулировка и практическое применение.

💖 Нравится? Поделись с друзьями ссылкой

Изменение направления распространения оптического излучения (с в е т а) при его прохождении через границу раздела двух сред. На протяжённой плоской границе раздела однородных изотропных прозрачных (непоглощающих) сред с преломления показателями n1 и n2 П. С. определяется . двумя закономерностями: преломлённый лежит в плоскости, проходящей через падающий луч и нормаль (перпендикуляр) к поверхности раздела; углы падения j и преломления c (рис.) связаныn Снелля законом преломления: n1sinj=n2sinc.

Ход лучей света при преломлении на плоской поверхности, разделяющей две прозрачные среды. Пунктиром обозначен отражённый луч. Угол преломления % больше угла падения j; это указывает, что в данном случае происходит преломление из оптически более плотной первой среды в оптически менее плотную вторую (n1>n2). n - нормаль к поверхности раздела.

П. с. сопровождается и отражением света; при этом сумма энергий преломлённого и отражённого пучков лучей (количеств. выражения для них следуют из Френеля формул) равна энергии падающего пучка. Их относит. интенсивности зависят от угла падения, значений n1 и n2 и поляризации света в падающем пучке. При н о р м а л ь н о м п а д е н и и отношение ср. энергий преломлённой и упавшей световых волн равно 4n1n2/(n1+n2)2; в существенном частном случае прохождения света из воздуха (n1 с большой точностью=1) в стекло с n2=1,5 оно составляет 96%. Если n2 энергия, принесённая на границу раздела падающей световой волной, уносится отражённой волной (явление полного внутреннего отражения). При любых j, кроме j=0, П. с. сопровождается изменением поляризации света (наиболее сильным при т. н. угле Брюстера j=arctg(n2/n1), (см. БРЮСТЕРА ЗАКОН), что используют для получения линейно-поляризованного света (см. В ОПТИКЕ). Зависимость П. с. от поляризации падающих лучей наглядно проявляется при двойном лучепреломлении в оптически анизотропных средах. В поглощающих средах П. с. можно строго описать, формально используя те же выражения, что и для непоглощающих сред, но рассматривая n как комплексную величину (мнимая часть к-рой характеризует средой; (см. МЕТАЛЛООПТИКА). c при этом становится также комплексным и теряет простой смысл угла преломления, какой он имеет для непоглощающих сред. В общем случае n среды зависит от длины l света (дисперсия света); поэтому при преломлении немонохроматич. света составляющие его лучи с разл. l идут по разным направлениям. На законах П. с. основано устройство линз и мн. оптич. приборов, служащих для изменения направления световых лучей и получения изображений оптических.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

Изменение направления распространения световой волны (светового луча) при прохождении через границу раздела двух различных прозрачных сред. На плоской границе раздела двух однородных изотропных сред с абс. преломления показателями и П. с. определяется след. законами: падающий, отражённый и преломлённый лучи и нормаль к границе раздела в точке падения лежат в одной плоскости (плоскости падения); углы падения и преломления (рис. 1), образованные соответствующими лучами с нормалью, и показатели преломления сред и связаны для монохроматич. света Снелля законом преломления

Рис. 1. Преломление света на границе раздела двух сред с n 1 и стрелками показано расположение компонент электрического вектора в плоскости падения, кружками с точкой - перпендикулярно плоскости падения.


Обычно П. с. сопровождается отражением света от той же границы. Для непоглощающих (прозрачных) сред полная энергия светового потока преломлённой волны равна разности энергий потоков падающей и отражённой волн (закон сохранения энергии). Отношение интенсивностей светового потока преломлённой волны к падающей - коэф. пропускания границы раздела сред - зависит от поляризации света падающей волны, угла падения и показателей преломления и Строгое определение интенсивности преломлённой (и отражённой) волны может быть получено из решения ур-ний Максвелла с соответствующими граничными условиями для элект-рич. и магн. векторов световой волны и выражается Френеля формулами. Если электрич. вектор падающей и преломлённой волн разложить на две (лежащую в плоскости падения) и (перпендикулярную к ней), ф-лы Френеля для коэф. пропускания соответствующих компонент имеют вид


Зависимость величин и от приведена на рис. 2. Из выражений (*) и рис. 2 следует, что для всех углов падения кроме частного случая нормального падения , когда

Это означает, что для всех (кроме = 0) происходит преломлённого света. Если на границу раздела падает естественный (не поляризованный) , для к-рого то в преломлённой волне т. е. свет будет частично поляризованным. Наиб. значит. преломлённой волны происходит при падении под углом Брюстера = когда (рис. 2). При этом < 1, а = 1, т. е. преломление поляризов. света с не сопровождается отражением.

Рис. 2. Зависимость коэффициентов пропускания и для волн различной поляризации от угла падения при преломлении на границе ( =1) - стекло (с показателем преломления = 1,52); - для падающего неполяризованного света.


Если свет падает из среды оптически менее плотной в более плотную (), то и преломлённый луч существует при всех значениях угла от О до Если свет падает из среды оптически более плотной в менее плотную то и преломлённая волна существует лишь в пределах угла падения от = 0 до = arcsin. При углах падения > arcsinП. с. не происходит, существует только отраженная волна - явление полного внутреннего отражения.

В оптически анизотропных средах в общем случае образуются две преломлённые световые волны с взаимно перпендикулярной поляризацией (см. Кристаллооптика).

Формально законы П. с. для прозрачных сред могут быть распространены и на поглощающие среды, если рассматривать для таких сред как комплексную величину где к - показатель поглощения. В случае металлов, обладающих сильным поглощением (и большим коэф. отражения), идущая внутрь металла волна поглощается в тонком приповерхностном слое и понятие проломленной волны теряет смысл (см. Металлооптика).

Поскольку показатель преломления сред зависит от длины волны света l (см. Дисперсия света), то в случае падения на границу раздела прозрачных сред немоно-хроматич. света преломлённные лучи разл. длин волн идут по разл. направлениям что используется в дисперсионных призмах.

На П. с. на выпуклых, вогнутых и плоских поверхностях прозрачных сред основано линз, служащих для получения изображений оптических, дисперсионных призм и др. оптич. элементов.

Если показатель преломления изменяется непрерывно (напр., в атмосфере с высотой), то при распространении светового луча в такой среде также происходит непрерывное изменение направления распространения - луч искривляется в сторону большего значения показателя преломления (см. Рефракция света в атмосфере), но при этом отражения света не происходит.

Под действием излучения большой интенсивности, создаваемого мощными лазерами, среда становится нелинейной. Индуцированные в молекулах среды под действием сильного электрич. поля световой волны диполи вследствие ангармоничности колебаний электронов молекул излучают в среде вторичные волны не только на частоте падающего излучения, но также волны с удвоенной частотой - гармоники - 2 (и более высокие гармоники 3, ...). С молекулярной точки зрения интерференция этих вторичных волн приводит к образованию в среде результирующих преломлённых волн с частотой (как в линейной оптике) (см. Гюйгенса - Френеля принцип), а также с частотой , к-рым соответствуют макроскопич. показатели преломления и Вследствие дисперсии среды и, следовательно, в среде образуются две преломлённые волны с частотами и распространяющиеся по разл. направлениям. При этом интенсивность преломлённой волны на частоте значительно меньше интенсивности на частоте (подробнее см. в ст. Нелинейная оптика).

Лит.: Ландсберг Г. С., Оптика, 5 изд., М., 1976; Сивухин Д. В., Общий курс физики, 2 изд., [т. 4] - Оптика, М., 1985. В. И. Малышев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ПРЕЛОМЛЕНИЕ СВЕТА" в других словарях:

    ПРЕЛОМЛЕНИЕ СВЕТА, изменение направления распространения света при прохождении через границу раздела двух прозрачных сред. Угол падения j и угол преломления c связаны соотношением: sinj/sinc=n2/n1=v1/v2, где n1 и n2 показатели преломления сред,… … Современная энциклопедия

    Изменение направления распространения света при прохождении через границу раздела двух прозрачных сред. угол падения и угол преломления связаны соотношением: где n1 и n2 показатели преломления сред, v1 и v2 скорости света в 1 й и 2 й средах … Большой Энциклопедический словарь

    преломление света - рефракция Изменение направления распространения света при прохождении через границу раздела двух сред или в среде с переменным от точки к точке коэффициентом преломления. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия… … Справочник технического переводчика

    ПРЕЛОМЛЕНИЕ СВЕТА, изменение направления светового луча при переходе из одной среды в другую. Отношение синуса угла падения (р к синусу угла преломления ip или, что то же, отношение скоростей распространения световой волны в одной и в другой… … Большая медицинская энциклопедия

    Изменение направления распространения света при прохождении через границу раздела двух прозрачных сред. Угол падения (и отражения) φ и угол преломления χ связаны соотношением: , где n1 и n2 показатели преломления сред, v1 и v2 скорости света… … Энциклопедический словарь

    Изменение направления распространения света при прохождении через границу раздела двух прозрачных сред. Угол падения (и отражения) ф и угол преломления х связаны соотношением: где п1 и n2 показатели преломления сред, v1 и v2 скорости света в 1 й… … Естествознание. Энциклопедический словарь

    преломление света - šviesos lūžimas statusas T sritis Standartizacija ir metrologija apibrėžtis Šviesos bangų sklidimo krypties kitimas nevienalytėje aplinkoje. atitikmenys: angl. refraction of light vok. Lichtbrechung, f rus. преломление света, n pranc. réfraction… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Явление преломления света - это физическое явление, которое происходит каждый раз, когда волна перемещается из одного материала в другой, в котором ее скорость распространения изменяется. Визуально оно проявляется в том, что изменяется направление распространения волны.

Физика: преломление света

Если падающий луч попадает на раздел между двумя средами под углом 90°, то ничего не происходит, он продолжает свое движение в том же направлении под прямым углом к границе раздела. Если угол падения луча отличается от 90°, происходит явление преломления света. Это, например, производит такие странные эффекты, как кажущийся излом объекта, частично погруженного в воду или миражи, наблюдаемые в горячей песчаной пустыне.

История открытия

В первом столетии н. э. древнегреческий географ и астроном Птолемей попытался математически объяснить величину рефракции, но предложенный им закон позже оказался ненадежным. В XVII в. голландский математик Виллеброрд Снелл разработал закон, который определял величину, связанную с отношением падающего и преломленного углов, которая впоследствии была названа показателем рефракции вещества. По сути, чем больше вещество способно преломлять свет, тем больше этот показатель. Карандаш в воде «сломан», потому что лучи, идущие от него, изменяют свой путь на границе раздела воздух-вода прежде, чем достигают глаз. К разочарованию Снелла, ему так и не удалось обнаружить причину этого эффекта.

В 1678 году еще один голландский ученый Христиан Гюйгенс разработал математическую зависимость, объясняющую наблюдения Снеллиуса и предположил, что явление преломления света - это результат разной скорости, с которой луч проходит через две среды. Гюйгенс определил, что отношение углов прохождения света через два материала с разными показателями рефракции должно быть равным отношению его скоростей в каждом материале. Таким образом, он постулировал, что через среды, имеющие больший коэффициент преломления, свет движется медленнее. Иначе говоря, скорость света через материал обратно пропорциональна его показателю преломления. Хотя впоследствии закон был экспериментально подтвержден, для многих исследователей того времени это не было очевидным, т. к. отсутствовали надежные средства света. Ученым казалось, что его скорость не зависит от материала. Лишь через 150 лет после смерти Гюйгенса скорость света была измерена с достаточной точностью, доказывающей его правоту.

Абсолютный показатель рефракции

Абсолютный показатель преломления n прозрачного вещества или материала определяется как относительная скорость, при которой свет проходит через него относительно скорости в вакууме: n=c/v, где с - скорость света в вакууме, а v - в материале.

Очевидно, что преломление света в вакууме, лишенном любого вещества, отсутствует, и в нем абсолютный показатель равен 1. Для других прозрачных материалов это значение больше 1. Для расчета показателей неизвестных материалов может использоваться преломление света в воздухе (1,0003).

Законы Снеллиуса

Введем некоторые определения:

  • падающий луч - луч, который приближается к разделению сред;
  • точка падения - точка разделения, в которую он попадает;
  • преломленный луч покидает разделение сред;
  • нормаль - линия, проведенная перпендикулярно к разделению в точке падения;
  • угол падения - угол между нормалью и падающим лучом;
  • определить света можно как угол между преломленным лучом и нормалью.

Согласно законам рефракции:

  1. Падающий, преломленный луч и нормаль находятся в одной плоскости.
  2. Отношение синусов углов падения и рефракции равно отношению коэффициентов рефракции второй и первой среды: sin i/sin r = n r /n i .

Закон преломления света (Снеллиуса) описывает взаимосвязь между углами двух волн и показателями рефракции двух сред. Когда волна переходит из менее рефракционной среды (например, воздуха) в более преломляющую (например, воду), ее скорость падает. Наоборот, когда свет переходит из воды в воздух, скорость увеличивается. в первой среде по отношению к нормали и угол рефракции во второй будут отличаться пропорционально разнице в показателях преломления между этими двумя веществами. Если волна переходит из среды с низким коэффициентом в среду с более высоким, то она изгибается в направлении к нормали. А если наоборот, то она удаляется.

Относительный показатель рефракции

Показывает, что отношение синусов падающего и преломленного углов равно константе, которая представляет собой отношение в обеих средах.

sin i/sin r = n r /n i =(c/v r)/(c/v i)=v i /v r

Отношение n r /n i называется относительным коэффициентом преломления для данных веществ.

Ряд явлений, которые являются результатом рефракции, часто наблюдаются в повседневной жизни. Эффект «сломанного» карандаша - одно из самых распространенных. Глаза и мозг следуют за лучами обратно в воду, как будто они не преломляются, а приходят от объекта по прямой линии, создавая виртуальный образ, который появляется на меньшей глубине.

Дисперсия

Тщательные измерения показывают, что на преломление света длина волны излучения или его цвет оказывают большое влияние. Другими словами, вещество имеет много которые могут различаться при изменении цвета или длины волны.

Такое изменение имеет место во всех прозрачных средах и носит название дисперсии. Степень дисперсии конкретного материала зависит от того, насколько показатель рефракции изменяется с длиной волны. С ростом длины волны становится менее выраженным явление преломления света. Это подтверждается тем, что фиолетовый рефрагирует больше красного, так как его длина волны короче. Благодаря дисперсии в обычном стекле происходит известное расщепление света на его составляющие.

Разложение света

В конце XVII века сэр Исаак Ньютон провел серию экспериментов, которые привели к его открытию видимого спектра, и показал, что белый свет состоит из упорядоченного массива цветов, начиная от фиолетового через синий, зеленый, желтый, оранжевый и заканчивая красным. Работая в затемненной комнате, Ньютон помещал стеклянную призму в узкий луч, проникавший через отверстие в оконных ставнях. При прохождении через призму происходило преломление света - стекло проецировало его на экран в виде упорядоченного спектра.

Ньютон пришел к выводу о том, что белый свет состоит из смеси разных цветов, а также, что призма «разбрасывает» белый свет, преломляя каждый цвет под другим углом. Ньютон не смог разделить цвета, пропуская их через вторую призму. Но когда он поставил вторую призму очень близко к первой таким образом, что все диспергированные цвета вошли во вторую призму, ученый установил, что цвета рекомбинируют, снова образуя белый свет. Этот открытие убедительно доказало спектральный который может быть легко разделен и соединен.

Явление дисперсии играет ключевую роль в большом числе разнообразных явлений. Радуга возникает в результате преломления света в каплях дождя, производя впечатляющее зрелище спектрального разложения, подобное тому, которое происходит в призме.

Критический угол и полное внутреннее отражение

При прохождении через среду с более высоким показателем рефракции в среду с более низким путь движения волн определяется углом падения относительно разделения двух материалов. Если угол падения превышает определенное значение (зависящее от показателя рефракции двух материалов), он достигает точки, когда свет не преломляется в среду с более низким показателем.

Критический (или предельный) угол определяется как угол падения, результирующий в угол рефракции, равный 90°. Другими словами, пока угол падения меньше критического, рефракция происходит, а когда он равен ему, то преломленный луч проходит вдоль места разделения двух материалов. Если угол падения превышает критический, то свет отражается обратно. Явление это носит название полного внутреннего отражения. Примеры его использования - алмазы и Огранка алмаза способствует полному внутреннему отражению. Большинство лучей, входящих сквозь верхнюю часть бриллианта, будет отражаться, пока они не достигнут верхней поверхности. Именно это дает бриллиантам их яркий блеск. Оптическое волокно представляет собой стеклянные «волосы», настолько тонкие, что когда свет входит в один конец, он не может выйти наружу. И только когда луч достигнет другого конца, он сможет покинуть волокно.

Понимать и управлять

Оптические приборы, начиная от микроскопов и телескопов до фотокамер, видеопроекторов, и даже человеческий глаз полагаются на тот факт, что свет может быть сфокусирован, преломлен и отражен.

Рефракция производит широкий спектр явлений, в том числе миражи, радуги, оптические иллюзии. Из-за преломления толстостенная кружка пива кажется более полной, а солнце садится на несколько минут позже, чем на самом деле. Миллионы людей используют силу рефракции, чтобы исправить дефекты зрения с помощью очков и контактных линз. Благодаря пониманию этих свойств света и управлению ими, мы можем увидеть детали, невидимые невооруженным глазом, независимо от того, находятся ли они на предметном стекле микроскопа или в далекой галактике.

  • Углом падения α называется угол между падающим лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (рис. 1).
  • Углом отражения β называется угол между отраженным лучом света и перпендикуляром к отражающей поверхности, восстановленным в точке падения (см. рис. 1).
  • Углом преломления γ называется угол между преломленным лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (см. рис. 1).
  • Под лучом понимают линию, вдоль которой переносится энергия электромагнитной волны. Условимся изображать оптические лучи графически с помощью геометрических лучей со стрелками. В геометрической оптике волновая природа света не учитывается (см. рис. 1).
  • Лучи, выходящие из одной точки, называют расходящимися , а собирающиеся в одной точке - сходящимися . Примером расходящихся лучей может служить наблюдаемый свет далеких звезд, а примером сходящихся - совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.

При изучении свойств световых лучей были экспериментально установлены четыре основных закона геометрической оптики:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения световых лучей;
  • закон преломления световых лучей.

Преломление света

Измерения показали, что скорость света в веществе υ всегда меньше скорости света в вакууме c .

  • Отношение скорости света в вакууме c к ее скорости в данной среде υ называется абсолютным показателем преломления :

\(n=\frac{c}{\upsilon }.\)

Словосочетание «абсолютный показатель преломления среды » часто заменяют «показатель преломления среды ».

Рассмотрим луч, падающий на плоскую границу раздела двух прозрачных сред с показателями преломления n 1 и n 2 под некоторым углом α (рис. 2).

  • Изменение направления распространения луча света при прохождении через границу раздела двух сред называется преломлением света .

Законы преломления:

  • отношение синуса угла падения α к синусу угла преломления γ есть величина постоянная для двух данных сред

\(\frac{sin \alpha }{sin \gamma }=\frac{n_2}{n_1}.\)

  • лучи, падающий и преломленный, лежат в одной плоскости с перпендикуляром, проведенным в точке падения луча к плоскости границы раздела двух сред.

Для преломления выполняется принцип обратимости световых лучей :

  • луч света, распространяющийся по пути преломленного луча, преломившись в точке O на границе раздела сред, распространяется дальше по пути падающего луча.

Из закона преломления следует, что если вторая среда оптически более плотная через первая среда,

  • т.е. n 2 > n 1 , то α > γ \(\left(\frac{n_2}{n_1} > 1, \;\;\; \frac{sin \alpha }{sin \gamma } > 1 \right)\) (рис. 3, а);
  • если n 2 < n 1 , то α < γ (рис. 3, б).
Рис. 3

Первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшего в свет во II веке нашей эры. Закон преломления света был экспериментально установлен в 1620 г. голландским ученым Виллебродом Снеллиусом. Заметим, что независимо от Снеллиуса закон преломления был также открыт Рене Декартом.

Закон преломления света позволяет рассчитывать ход лучей в различных оптических системах.

На границе раздела двух прозрачных сред обычно одновременно с преломлением наблюдается отражение волн. Согласно закону сохранения энергии сумма энергий отраженной W o и преломленной W np волн равна энергии падающей волны W n:

W n = W np + W o .

Полное отражение

Как уже говорилось выше, при переходе света из оптически более плотной среды в оптически менее плотную среду (n 1 > n 2), угол преломления γ становится больше угла падения α (см. рис. 3, б).

По мере увеличения угла падения α (рис. 4), при некотором его значении α 3 , угол преломления станет γ = 90°, т. е. свет не будет попадать во вторую среду. При углах больших α 3 свет будет только отражаться. Энергия преломленной волны W np при этом станет равной нулю, а энергия отраженной волны будет равна энергии падающей: W n = W o . Следовательно, начиная с этого угла падения α 3 (в дальнейшем будет обозначать его α 0), вся световая энергия отражается от границы раздела этих сред.

Это явление получило название полное отражение (см. рис. 4).

  • Угол α 0 , при котором начинается полное отражение, называется предельным углом полного отражения .

Значение угла α 0 определяется из закона преломления при условии, что угол преломления γ = 90°:

\(\sin \alpha_{0} = \frac{n_{2}}{n_{1}} \;\;\; \left(n_{2} < n_{1} \right).\)

Литература

Жилко, В.В. Физика: учеб. Пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В.Жилко, Л.Г.Маркович. - Минск: Нар. Асвета, 2009. - С. 91-96.

4.1. Основные понятия и законы геометрической оптики

Законы отражения света.
Первый закон отражения:
лучи, падающий и отражённый, лежат в одной плоскости с перпендикуляром к отражающей поверхности, восстановленным в точке падения луча.
Второй закон отражения:
угол падения равен углу отражения (см. рис. 8).
α - угол падения, β - угол отражения.

Законы преломления света. Показатель преломления.
Первый закон преломления:
падающий луч, преломлённый луч и перпендикуляр, восстановленный в точке падения к границе раздела, лежат в одной плоскости (см. рис. 9).


Второй закон преломления:
отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и называемая относительным показателем преломления второй среды относительно первой.

 Относительный показатель преломления показывает, во сколько раз скорость света в первой среде отличается от скорости света во второй среде:

Полное отражение.
Если свет переходит из оптически более плотной среды в оптически менее плотную, то при выполнении условия α > α 0 , где α 0 - предельный угол полного отражения, свет вообще не выйдет во вторую среду. Он полностью отразится от границы раздела и останется в первой среде. При этом закон отражения света даёт следующее соотношение:

4.2. Основные понятия и законы волновой оптики

Интерференцией называется процесс наложения волн от двух или нескольких источников друг на друга, в результате которого происходит перераспределение энергии волн в пространстве. Для перераспределения энергии волн в пространстве необходимо, чтобы источники волн были когерентны. Это означает, что они должны испускать волны одинаковой частоты и сдвиг по фазе между колебаниями этих источников с течением времени не должен изменяться.
 В зависимости от разности хода (∆) в точке наложения лучей наблюдается максимум или минимум интерференции. Если разность хода лучей от синфазных источников ∆ равна целому числу длин волн (m - целое число), то это максимум интерференции:

если нечётному числу полуволн - минимум интерференции:

Дифракцией называют отклонение в распространении волны от прямолинейного направления или проникновение энергии волн в область геометрической тени. Дифракция хорошо наблюдается в тех случаях, когда размеры препятствий и отверстий, через которые проходит волна, соизмеримы с длиной волны.
 Один из оптических приборов, на котором хорошо наблюдать дифракцию света - это дифракционная решётка. Она представляет собой стеклянную пластинку, на которую на равном расстоянии друг от друга алмазом нанесены штрихи. Расстояние между штрихами - постоянная решётки d. Лучи, прошедшие через решётку, дифрагируют под всевозможными углами. Линза собирает лучи, идущие под одинаковым углом дифракции, в одной из точек фокальной плоскости. Идущие под другом углом - в других точках. Накладываясь друг на друга, эти лучи дают максимум или минимум дифракционной картины. Условия наблюдения максимумов в дифракционной решётке имеют вид:

где m - целое число, λ - длина волны (см. рис. 10).

Явление преломления света было известно еще Аристотелю. Птолемей сделал попытку установить закон количественно, измеряя углы падения и преломления света. Однако ученый сделал неверный вывод о том, что угол преломления пропорционален углу падения. После него было сделано еще несколько попыток установления закона,успешнойстала попытка голландского ученого Снеллиуса в 17 веке.

Закон преломления света является одним из четырех основных законов оптики, которые были эмпирически открыты еще до установления природы света. Это законы:

  1. прямолинейного распространения света;
  2. независимости пучков света;
  3. отражения света от зеркальной поверхности;
  4. преломление света на границе двух прозрачных веществ.

Все данные законы ограничены в применении и являются приближенными. Выяснение границ и условий применимости этих законов имеет большое значение в установлении природы света.

Формулировка закона

Падающий луч света, преломленный луч и перпендикуляр к границе раздела двух прозрачных сред лежат в одной плоскости (рис.1). При этом угол падения () и угол преломления () связаны соотношением:

где — постоянная величина, не зависящая от углов , которая называется показателем преломления. Если быть более точным, то в выражении (1) используют относительный показатель преломления вещества, в котором распространяется преломленный свет, относительно среды, в которой распространялась падающая волна света:

где — абсолютный показатель преломления второй среды, — абсолютный показатель преломления первого вещества; — фазовая скорость распространения света в первой среде; — фазовая скорость распространения света вовтором веществе. В том случае, если title="Rendered by QuickLaTeX.com" height="16" width="60" style="vertical-align: -4px;">, то вторая среда считается оптически более плотной, чем первая.

Учитывая выражение (2) закон преломления иногда записывают как:

Из симметрии выражения (3) следует обратимость лучей света. Если обратить преломленный луч (рис.1), и заставить его падать на границу раздела под углом , то в среде (1) он будет идти в обратном направлении вдоль падающего луча.

В том случае, если световая волна распространяется из вещества с большим показателем преломления в среде с меньшим показателем преломления, то угол преломления будет больше, чем угол падения.

При увеличении угла падения увеличивается и угол преломления. Это происходит до тех пор, пока при некотором угле падения, который называют предельным (), угол преломления не станет равен 900. Если угол падения больше предельного угла (), то весь падающий свет отражается от границы раздела.Для предельного угла падения выражение (1) трансформируется в формулу:

где уравнение (4) удовлетворяет величинам угла при Это означает, что явление полного отражения возможно при попадании света из вещества оптически более плотного в вещество оптически менее плотное.

Условия применимости закона преломления

Закон преломления света называют законом Снеллиуса. Он выполняется для монохроматического света, длина волны которого много больше, чем межмолекулярные расстояния среды, в которой он распространяется.

Закон преломления нарушается, если размер поверхности, которая разделяет две среды, мал и возникает явление дифракции. Кроме этого закон Снеллиуса не выполняется, если проявляются нелинейные явления, которые могут возникать при больших интенсивностях света.

Примеры решения задач

ПРИМЕР 1

Задание Каков показатель преломления жидкости (), если луч света, падая на границу стекло — жидкость испытывает полное отражение? При этом предельный угол полного отражения равен , показатель преломления стекла равен
Решение Основой для решения задачи служит закон Снеллиуса, который запишем в виде:

Выразим из формулы (1.1) искомую величину (), получим:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Между двумя прозрачными пластинками с показателями преломления и находится слой прозрачного вещества с показателем преломления (рис.2). Луч света падает на границу раздела первая пластинка — вещество под углом ( меньше предельного). Переходя из слоя вещества во вторую пластинку, он падает на нее под углом . Покажите, что луч преломляется в такой системе, как будто прослойки между пластинами не существует.
Рассказать друзьям