Органическая химия гетероциклические соединения. Ароматические гетероциклические соединения

💖 Нравится? Поделись с друзьями ссылкой

Др. элементов (гетероатомов). Наиб. значение имеют Т.е., в цикл к-рых входят N, О, S. К ним относятся мн, прир. ; они входят в виде структурных фрагментов в нуклеиновых к-т, и др. Гетероциклические соединения-самый многочисленный класс орг. соед., включающий ок. 2 / 3 всех известных прир. и синтетич. орг. .

Номенклатура. Согласно правилам номенклатуры , для важнейших гетероциклических соединений сохраняются их тривиальные назв., напр. (ф-ла I), (II), (III). Систематич. назв. моноциклич. Т.е., содержащих в цикле от 3 до 10 , образуют путем сочетания приставок, обозначающих гетероатомы (N-аза, О-окса, S-тиа, Р-фосфа и т. п.), с корнями, к-рые для основных гетероциклических соединений приведены в таблице. Степень ненасыщ. гетероцикла отражается в назв. с помощью корней или приставок "дигидро" (присоединены два ), "тетрагидро", "пергидро" и т.д. Примеры систематич. назв.: (IV), тиирен (V), тает (VI), 1,3-диоксолан (VII), пергидропиримидин (VIII).

Для гетероциклических соединений с 11 и более членами в цикле, мостиковых и нек-рых конденсиров. систем используется "а"-номенклатура, по правилам к-рой первая составная часть назв. обозначает гетероатом, а вторая-назв. , к-рое м. б. образовано, если считать, что в ф-ле гетероциклического соединения все гетероатомы заменены на С, группы СН или СН 2 , напр. 1,5-диазабицикло (Xill). Для названия гетероциклических соединений этого типа используют также традиционные назв., напр. пентадеканолид (XIV), 18-краун-6-эфир (XV).

КОРНИ, ИСПОЛЬЗУЕМЫЕ ПРИ СОСТАВЛЕНИИ НАЗВАНИЙ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ ПО НОМЕНКЛАТУРЕ

Химические свойства. Для 3- и 4-членных гетероциклических соединений характерна легкость раскрытия напряженного цикла. 5- и 6-членные ненасыщ. гетероциклы (наиб. многочисл. тип гетероциклических соединений), замкнутая сопряженная система связей к-рых включает (4м + 2) , обладают ароматич. характером (правило Хюккеля) и наз. гетероароматич. соединениями. Для них, как и для бензоидных ароматич. соед., Наиб. характерны р-ции замещения. При этом гетероатом играет роль "внутренней" ф-ции, определяющей ориентацию, а также активирующее или дезактивирующее влияние на кольцо к действию разл. .

Гетероароматич. соед. подразделяют на я-избыточные идефицитные. К первым относят 5-членные гетероциклические соединения с одним гетероатомом, в к-рых секстет делокализован между пятью цикла, что обусловливает их повыш. по отношению к электроф. агентам. Кдефицитным относят 6-членные гетероциклы с шестью , к-рые распределяются, как и в случае , между шестью кольца, но один или неск. из них - гетероатомы с большей, чем у , . Такие соед. напоминают по реакц. способности производные

Лекция № 15


соединения

План

  1. Классификация.

  2. одним гетероатомом.

  3. одним гетероатомами.

  4. атомами азота.


Лекция № 15

Биологически активные гетероциклические
соединения

План

  1. Классификация.
  2. Пятичленные азотсодержащие гетероциклы с
    одним гетероатомом.
  3. Шестичленные азотсодержащие гетероциклы с
    одним гетероатомами.
  4. Пяти- и шестичленные гетероциклы с двумя
    атомами азота.

Гетероциклическими называют соединения, молекулы
которых содержат циклы, включающие наряду с атомами углерода один или несколько
гетероатомов. Гетероциклы – самый многочисленный класс органических соединений,
включающий около 2/3 всех известных природных и синтетических органических
веществ. К гетероциклам относятся многие алкалоиды, витамины, природные
пигменты. Они являются структурными фрагментами молекул нуклеиновых кислот и
белков. Более 60% наиболее известных и широко употребляемых лекарственных
препаратов являются гетероциклическими соединениями.

1. Классификация

Гетероциклы классифицируют по следующим основным признакам:

    • по природе и числу гетероатомов;
    • по размеру цикла;
    • по степени ненасыщенности.

Наибольшее распространение в
природе имеют пяти- и шестичленные гетероциклы, содержащие в качестве
гетероатомов азот, а также кислород и серу.

По степени ненасыщенности различают насыщенные, ненасыщенные и ароматические
гетероциклы. Гетероциклы неароматического характера по своим свойствам сходны с
соответствующими ациклическими соединениями (аминами, амидами, простыми и
сложными эфирами и т.д.). 5- и 6-членные гетероциклы, замкнутая сопряженная
система которых включает (4n + 2) электрона, обладают ароматическим характером
(см. лек. №2). Такие соединения по свойствам родственны бензолу и относятся к
ароматическим гетероциклическим соединениям. Для них, как и для бензоидных
систем, наиболее характерны реакции замещения. При этом гетероатом выполняет
роль “внутренней” функции, определяющей скорость и направление реакций
замещения.

Именно ароматические гетероциклические соединения широко распространены в
природе. Далее будут рассмотрены азотсодержащие ароматические гетероциклы.

2. Пятичленные азотсодержащие гетероциклы с одним
гетероатомом


    Пиррол

    Пиррол – 5-членный ароматический гетероцикл с одним атомом азота.

    Ароматическая система пиррола включает 6 p -электронов:
    четыре
    p -электрона от двойных связей и два – от гетероатома.

    Атом азота с неподеленной парой электронов
    действует как донор, повышая электронную плотность на атомах углерода цикла.
    Поэтому пиррол относят к p -избыточным гетероциклам.

    Химические свойства

    Химические свойства пиррола определяются наличием ароматической системы и
    полярной связи N-H.

    Кислотно-основные свойства

    Неподеленная пара электронов азота является частью ароматического секстета
    электронов, поэтому пиррол практически лишен основных свойств (). Сила пиррола как основания не может
    быть точно определена, так как он является ацидофобным соединением и
    полимеризуется под действием кислот.

    В то же время, наличие полярной связи N-H
    обуславливает слабые кислотные свойства пиррола (pK a =16,5).

    Реакции электрофильного
    замещения

    Пиррол, как p -избыточный гетероцикл, легко вступает в реакции электрофильного замещения.
    Активность пиррола по отношению к электрофилам выше, чем у бензола, и близка к
    активности анилина и фенола. Электрофильное замещение направляется
    преимущественно в положение 2. Из-за ацидофобности пиррола
    S
    E -реакции проводятся в
    отсутствии кислот.


    пиррола.

    Тетрапиррольные соединения содержат ароматический макроцикл порфин , включающий четыре пиррольных кольца.

    Замещенные порфины называют порфиринами . В виде комплексов с
    металлами порфирины и частично гидрированные порфирины входят в состав важных
    природных соединений – гема (простетической группы гемоглобина –
    содержащегося в эритроцитах основного белка дыхательного цикла, переносчика
    кислорода от органов дыхания к тканям), зеленого пигмента растений хлорофилла, витамина В 12 .

    Индол

    Индол – ароматическое гетероциклическое соединение, содержащее
    конденсированные бензольный и пиррольный циклы.

    Химические свойства

    Химические свойства индола аналогичны свойствам пиррола. Он практически не
    обладает основными свойствами, ацидофобен, является слабой NH-кислотой.
    Активно вступает в реакции электрофильного замещения, при этом заместитель
    вступает в положение 3 пиррольного кольца.

    Биологически активные производные
    индола.

    Триптофан незаменимая (не
    синтезируется в организме человека) аминокислота, входящая в состав животных и
    растительных белков.

    Серотонин – биогенный амин,
    продукт метаболизма триптофана. Обладает высокой биологической активностью,
    является нейромедиатором головного мозга.

    Триптамин – токсичный биогенный
    амин, продукт декарбоксилирования триптофана.

    Индольные алкалоиды. Алкалоиды –
    гетероциклические азотсодержащие основания растительного происхождения,
    обладающие ярко выраженным физиологическим действием. Индольное кольцо входит
    в состав многих алкалоидов – резерпина (содержится в растениях рода
    раувольфия; используется как успокаивающее и понижающее кровяное давление
    средство), стрихнина (содержится в семенах растения чилибухи; используется как
    тонизирующее средство), лизергиновой кислоты (алкалоид спорыньи; диэтиламид
    лизергиновой кислоты — ЛСД — сильное галлюциногенное средство).

3. Шестичленные азотсодержащие гетероциклы с одним
гетероатомами.

Пиридин

Пиридин – 6-членный ароматический гетероцикл с одним атомом азота.

Ароматическая система пиридина включает 6 p -электронов и
подобна ароматической системе бензола: каждый атом цикла подает в ароматический
секстет один р-электрон. Неподеленная пара электронов азота в силу своей
пространственной ориентации в сопряжении не участвует

Атом азота действует как акцептор, понижая
электронную плотность на атомах углерода цикла. Поэтому пиридин относят к p -дефицитным гетероциклам.

Химические свойства

Химические свойства пиридина определяются наличием ароматической системы и
основного атома азота.

Основные и нуклеофильные свойства.

Пиридин проявляет слабые основные свойства (=5,23) за счет неподеленной пары электронов
азота и с кислотами образует соли пиридиния.

Атом азота пиридина проявляет также
нуклеофильные свойства и алкилируется алкилгалогенидами с образованием солей
алкилпиридиния.

Соли алкилпиридиния легко взаимодействуют с
нуклеофильными реагентами, в том числе с комплексными гидридами металлов
(NaBH 4 ), с образованием продуктов
присоединения. Подобные процессы лежат в основе механизма действия кофермента
НАД
+ (см. лек. № 19).

Реакции электрофильного замещения

Реакции электрофильного замещения для пиридина
идут с большим трудом, что обусловлено p -дефицитностью ядра и способностью атома азота
образовывать соли с протонными кислотами и комплексы с кислотами Льюиса, что еще
больше уменьшает нуклеофильность ядра. По способности к электрофильному
замещению пиридин напоминает нитробензол. Атака электрофилами идет по положению
3.

Реакции нуклеофильного замещения

Наиболее характерными для пиридина являются реакции нуклеофильного замещения,
которые идут по положениям 2 и 4. Примерами таких реакций является
взаимодействие пиридина с амидом натрия (реакция Чичибабаина) и со щелочами.

Окисление и восстановление

Цикл пиридина устойчив к действию окислителей. Алкилпиридины окисляются с
образованием пиридинкарбоновых кислот.

Пиридин гидрируется в жестких условиях с
образованием насыщенного гетероцикла – пиперидина.

Соли алкилпиридиния легко восстанавливаются
комплесными гидридами металлов (см. выше).

Биологически активные производные
пиридина.

Никотиновая кислота (см. выше) и
ее амид — никотинамид — две формы витамина РР. Никотинамид является
составной частью ферментативных систем, ответственных за
окислительно-восстановительные процессы в организме. Диэтиламид никотиновой
кислоты – кордиамин – эффективный стимулятор центральной нервной
системы.

Пиридоксин и пиридоксаль – различные
формы витамина В 6 ,
предшественники кофермента пиридоксальфосфата , участвующего в процессах
синтеза аминокислот из кетокислот путем трансаминирования (см. лек. №16).

Никотинамиадениндинуклеотид кофермент, участвующий в процессах окисления и восстановления, связанных с
переносом гидрид-аниона (см. лек. №19).

Пиридиновые алкалоиды. Я дро пиридина и пиперидина входит в состав
многих алкалоидов – никотина и анабазина (алкалоиды, содержащиеся в листьях
табака; чрезвычайно токсичны, используются как инсектициды), атропина
(содержится в растениях семейства пасленовых; высокотоксичен; применяется в
медицине как средство, вызывающие расширение зрачка), кокаина (содержится в
листьях коки; стимулирует и возбуждает нервную систему, известен как одно из
первых местноанестезирующих и наркотических средств).

Хинолин и
изохинолин

Хинолин и изохинолин – ароматические гетероциклические соединения, содержащие
конденсированные бензольный и пиридиниевый циклы.

Химические свойства

Химические свойства хинолина и изохинолина аналогичны свойствам пиридина. Они
обладают основными и нуклеофильными свойствами и образуют соли при
протонировании сильными кислотами и при алкилировании алкилгалогенидами. Реакции
электрофильного замещения протекают по наименее электронодефицитному бензольному
кольцу и направляются в хинолине в положения 6 и 8. Нуклеофильные реагенты
атакуют пиридиниевый цикл хинолина в положение 2.

При каталитическом гидрировании хинолина в
первую очередь затрагивается пиридиниевый цикл. При окислении разрушается
бензольный цикл и образуется 2,3- пиридиндикарбоновая кислота.

Биологически активные производные хинолина
и изохинолина.

8-Гидроксихинолин и его производные – 8-гидрокси-5-нитрохинолин
(5-НОК)
и 8-гидрокси-7-иод-5-хлорхинолин (энтеросептол ) – обладают
сильным бактерицидным действием и используются как противовоспалительные и
антисептические средства.

Действие этих препаратов основано на образование
прочных хелатных комплексов с ионами металлов. Таким образом происходит
связывание микроэлементов, необходимых для жизнедеятельности бактерий.

Хинин — алкалоид коры хинного
дерева, эффективное противомалярийное средство.

Алкалоиды опия: морфин — сильнейшее болеутоляющее средство,
наркотик; папаверин — спазмолитическе и сосудорасширяющее средство.

4. Пяти- и шестичленные гетероциклы с
двумя атомами азота.


    Имидазол.
    Пиразол.

    Имидазол и пиразол – 5-членные ароматические гетероциклы, содержащие два
    атома азота.

    Ароматические системы имидазола и пиразола
    включают по 6 p -электронов. При этом один из атомов азота цикла подает в ароматическую
    систему один р-электрон (пиридиниевый атом азота), другой атом азота –
    неподеленную пару электронов (пиррольный атом азота).

    Имидазол и пиразол содержат в молекуле
    кислотный центр (связь N-H) и основный центр (пиридиниевый атом азота) и
    являются амфотерными соединениями. При этом основные свойства преобладают над
    кислотными.

    В результате присутствия в молекуле
    одновременно кислотного и основного центров имидазол и пиразол ассоциированы
    за счет образования межмолекулярных водородных связей.

    Следствием такой ассоциации являются высокие
    температуры кипения и быстрый водородный межмолекулярный обмен между
    пиррольным и пиридиниевым атомами азота, который в случае замещенных
    гетероциклов приводит к существованию таутомеров.

    Таутомерные формы быстро превращаются друг в
    друга и не могут быть выделены в индивидуальном состоянии.

    Особый вид таутомерии характерен для
    5-гидроксипиразолов (пиразолонов-5). В растворе они существуют в виде
    равновесной смеси гидроки-(I) и оксо-(II,III) таутомерных форм.

    В кристаллическом состоянии наиболее устойчива
    форма II.

    Биологически активные производные
    имидазола и пиразола.

    Гистидин a -аминокислота, входящая в
    состав многих белков, в том числе гемоглобина; в составе ферментов
    осуществляет кислотный и основной катализ за счет амфотерных свойств
    имидазольного цикла.

    Гистамин – биогенный амин,
    продукт декарбоксилирования гистидина; обеспечивает аллергические реакции
    организма.

    Производные пиразолона-5 — антипирин,
    амидопирин, анальгин
    – ненаркотические анальгетики, жаропонижающие и
    противовоспалительные средства.

    Пиримидин

    Пиримидин – 6-членный ароматический гетероцикл с двумя атомами азота.

    Ароматическая система пиримидина включает 6 p -электронов и
    подобна ароматической системе пиридина: каждый атом цикла, в том числе и оба
    атома азота, подают в ароматический секстет один р-электрон.

    Химические свойства пиримидина подобны
    свойствам пиридина. Пиримидин является более слабым основанием, чем пиридин,
    за счет электроноакцепторного влияния второго атома азота (=1,3). Снижение, по сравнению с
    пиридином, электронной плотности на атомах углерода кольца приводит к
    инертности пиримидина по отношению к электрофильным реагентам и окислителям.
    Реакции нуклеофильного замещении и восстановления в ядре пиримидина, напротив,
    протекают легче, чем в пиридине.

    Биологически активные производные
    пиримидина.


    аминопроизводные пиримидина.

    Урацил, тимин и цитозин нуклеиновые основания; входят в состав нуклеозидов, нуклеотидов,
    нуклеиновых кислот. Существуют в таутомерных оксо- и гидроксиформах, переходы
    между которыми осуществляются за счет миграции протона между кислородом и
    азотом кольца.

    Наиболее стабильными являются оксо-форма для
    цитозина и диоксо-формы для урацила и тимина.

    Оксо-формы нуклеиновых оснований образуют
    прочные межмолекулярные водородные связи.

    Ассоциация такого типа играет важную роль в
    формировании структуры ДНК.

    Барбитуровая кислота и ее производные – барбитураты (веронал, люминал) – снотворные и противосудорожные
    средства.

    Тиамин (витамин
    В
    1 ) содержит два гетероцикла –
    пиримидин и тиазол.

    Тиамин является предшественником кофермента
    кокарбоксилазы, принимающего участие в декарбоксилировании a -кетокислот и синтезе
    кофермента А.

    Пурин

Пурин – ароматическое гетероциклическое соединение,
содержащее конденсированные пиримидиновый и имидазольный циклы.

Пурин, подобно имидазолу, существует в виде двух
таутомерных форм. Более стабильной является форма с атомом водорода в положении
7 .

Пурин является амфотерным соединением и образует
соли с сильными кислотами (по атому азота имидазольного цикла) и щелочными
металлами (по NH-группе). При действии алкилирующих реагентов (метилиодид,
диметилсульфат) дает 9-N-алкилпроизводные. Реакции замещения у атомов углерода
ароматического кольца характерны только для замещенных пуринов.

Биологически активные производные
пурина.

Важную биологическую роль играют гидрокси- и
аминопроизводные пурина.

Аденин и гуанин — нуклеиновые основания;
входят в состав нуклеозидов, нуклеотидов, в том числе нуклеотидных коферментов,
нуклеиновых кислот.

Для аденина известны две таутомерные формы,
являющиеся результатом миграции протона между атомами азота имидазольного цикла.
У гуанина, кроме того, существуют таутомерные гидрокси- и оксоформы.

Стабильными таутомерными формами гуанина
являются оксо-формы.

Гидроксипурины – гипоксантин, ксантин,
мочевая кислота
– продукты метаболизма пуриновых оснований.

Для них, как и для гуанина, характерны
таутомерные превращения между гидрокси- и оксо-формами. Наиболее стабильными
являются оксо-формы.

Мочевая кислота – конечный продукт метаболизма
пуриновых соединений в организме. Она выделяется с мочой. Соли мочевой кислоты – ураты – откладываются в суставах при подагре, а также в виде почечных
камней.

In vitro аденин и гуанин могут быть превращены
соответственно в гипоксантин и ксантин дезаминированием под действием азотистой
кислоты.

Такие превращения пуриновых оснований в составе
нуклеиновых кислот приводят к мутациям.

Пуриновые алкалоиды – кофеин, теофиллин,
теобромин
– метилированные по азоту производные ксантина; содержатся в чае,
кофе, какао-бобах.

Кофеин – эффективное средство, возбуждающее
центральную нервную систему и стимулирующее работу сердца. Теофиллин и теобромин
менее эффективны, однако обладают сильными мочегонными свойствами.

М.И. Антонова, а.С. Берлянд

БИООРГАНИЧЕСКАЯ химия

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ

Москва 2010

Государственное образовательное учреждение высшего профессионального образования

«Московский Государственный медико-стоматологический университет» федерального агентства по здравоохранению и социальному развитию российской федерации

Кафедра общей и биоорганической химии

М.И. Антонова, А.С. Берлянд

БИООРГАНИЧЕСКАЯ химия

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ

Учебное пособие по биоорганической химии

для самостоятельной работы студентов

стоматологических факультетов медицинских вузов

Рекомендуется Учебно-методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебного пособия для студентов, обучающихся по специальности 060105(040400) - «Стоматология»

Москва 2010

ББК 24.1 я 73

УДК 546 (075.8)

Рецензенты:

зав. кафедрой органической химии ММА им. И.В. Сеченова, д. х. н., профессор Н.А. Тюкавкина,

зав. кафедрой фармакологии МГМСУ,

д.м.н., профессор А.Г. Муляр

М.И. Антонова, А.С. Берлянд. Биоорганическая химия, часть VI. Учебное пособие. М., МГМСУ, 2010, 63с.

Под редакцией профессора А.С. Берлянда

Настоящее учебно-методическое пособие посвящено соединениям, объединенным под общим названием «Гетероциклические соединения». В пособии изложен теоретический материал, разобран ряд эталонных задач, а также приведены вопросы и задачи для самостоятельной работы студентов. Пособие рекомендуется использовать студентам стоматологических, лечебных и педиатрических факультетов медицинских вузов Российской Федерации для подготовки к занятиям по биоорганической химии.

ББК 24.1 я 73

© МГМСУ, 2010

© М.И. Антонова, А.С. Берлянд. 2010.

Гетероциклические соединения

1. Общая характеристика.

Гетероциклическими называют соединения циклического строения, содержащие в цикле не только атомы углерода, но и атомы других элементов (гетероатомы).

Гетероциклические соединения – самая распространенная группа органических соединений. Они входят в состав многих веществ природного происхождения, таких как нуклеиновые кислоты, хлорофилл, гем крови, алкалоиды, пенициллины, многие витамины. Гетероциклические соединения играют важную роль в процессах метаболизма, обладают высокой биологической активностью. Значительная часть современных лекарственных веществ содержит в своей структуре гетероциклы.

2. Классификация и номенклатура гетероциклических соединений.

2.1. Классификация.

Для классификации гетероциклических соединений используют следующие признаки.

    по размеру цикла гетероциклические соединения бывают чаще всего трех-, четырех-, пяти-, шести- и семичленными:

    по типу элемента , входящего в состав цикла, это главным образом соединения с атомами азота, кислорода или серы:

    по числу гетероатомов , входящих в цикл, наиболее распространены гетероциклы с одним и двумя гетероатомами, но известны соединения и с четырьмя атомами в одном цикле:

    по природе и взаимному расположению нескольких гетероатомов возможны разнообразные комбинации (например, N и S, N и O и т.д.), причем гетероатомы могут занимать различные положения относительно друг друга:

    по степени насыщенности гетероциклы могут быть ароматическими, ненасыщенными и насыщенными:

Химия ароматических гетероциклов изучена наиболее подробно. Полностью или частично насыщенные гетероциклы в силу особенностей их химических свойств рассматриваются, как правило, не как гетероциклические соединения, а как циклические аналоги тех или иных алифатических соединений (простые эфиры, сульфиды, вторичные амины).

    по числу циклов различают моноциклические, полициклические (главным образом, конденсированные) системы. Число циклов и их типы могут быть самыми различными:

13.1. Общая характеристика 13.1.1. Классификация

Гетероциклическими называют циклические органические соединения, в состав цикла которых, помимо атомов углерода, входят один или несколько атомов других элементов (гетероатомов).

Гетероциклические соединения очень разнообразны. Их классифицируют согласно следующим структурным признакам:

Природа гетероатома;

Число гетероатомов;

Размер цикла;

Степень насыщенности.

В зависимости от природы гетероатома различают, в частности, азот-, кислород-, серосодержащие гетероциклические соединения. Гетероциклы с этими гетероатомами наиболее важны в связи с их биологической ролью.

По числу гетероатомов гетероциклические соединения подразделяют на гетероциклы с одним, двумя и т. д. гетероатомами. При этом гетероатомы могут быть как одинаковыми, так и разными.

Размер цикла может быть различным, начиная с трехчленного. Наибольшее распространение в природе имеют пяти- и шестичленные циклы, содержащие в качестве гетероатомов азот, кислород, серу. В таких соединениях валентные углы между атомами в цикле существенно не отличаются от обычных валентных углов sp 3 - или sр 2 -гибридизованного атома углерода. Причина этого заключается в одинаковой гибридизации атомов С, N, О, S и сравнительно небольших размерах указанных атомов, близких по размеру к группе СН 2, поэтому замена группировки -СН 2- или -СН= в цикле на такой гетероатом практически не изменяет геометрию молекулы.

Гетероциклы могут быть ароматическими, насыщенными и ненасыщенными.

Ароматические гетероциклы - самые распространенные в природе, поэтому им уделено основное внимание в данной главе. Наиболее важные гетероциклы, составляющие основу многих природных биологически активных веществ и лекарственных средств, приведены на схеме 13.1.

Насыщенные гетероциклы, например приведенные ниже, представляют собой циклические простые эфиры (см. 8.2) или вторичные амины с циклическим скелетом.

Ненасыщенные гетероциклы (кроме ароматических) часто неустойчивы и встречаются, как правило, в виде производных. Кислородсодержащий гетероцикл α-пиран вообще не известен, так как термодинамически неустойчив.

Схема 13.1. Ароматические гетероциклические соединения

13.1.2. Номенклатура

Названия ароматических гетероциклов, как правило, тривиальные, и они приняты номенклатурой ИЮПАК (см. схему 13.1).

В моноциклических соединениях нумерация атомов всегда начинается от гетероатома (примеры нумерации приведены выше). В гетероциклах с несколькими одинаковыми гетероатомами эти атомы получают наименьшие номера. Если имеются два атома азота с различным электронным строением (-N= и -NH-), то нумерацию ведут от фрагмента -NH-, как показано на примерах пиразола и имидазола. В гетероциклах с разными гетероатомами старшим считается кислород, далее сера и затем азот.

В конденсированных гетероциклах нумерацию ведут от одной из вершин бициклической структуры так, чтобы гетероатом полу- чил наименьший номер (см. примеры хинолина и изохинолина). Однако имеются исключения из этого правила, как, например, пурин (см. схему 13.1), для которого сохранена исторически сложившаяся нумерация.

Производные гетероциклов называют по общим правилам заместительной номенклатуры (см. 1.2.1), где в качестве названий родоначальных структур приняты тривиальные названия гетероциклов. В приведенных примерах в скобках указаны также тривиальные названия некоторых производных.

13.2. Реакционная способность ароматических гетероциклов

13.2.1. Ароматические свойства

Пиридин по электронному строению напоминает бензол. Все атомы углерода и атом азота находятся в состоянии sp 2 -гибридизации, и все σ-связи (C-C, C-N и C-H) лежат в одной плоскости (рис. 13.1, а). Из трех гибридных орбиталей атома азота две участвуют в образовании

Рис. 13.1. Пиридиновый атом азота (а), (б) и сопряженная система в молекуле пиридина (в) (связи С-Н для упрощения рисунка опущены)

σ-связей с атомами углерода (показаны только оси этих орбиталей), а третья орбиталь содержит неподеленную пару электронов и в образовании связи не участвует. Атом азота с такой электронной конфигурацией называют пиридиновым.

За счет электрона, находящегося на негибридизованной р-орбитали (см. рис. 13.1, б), атом азота участвует в образовании единого электронного облака ср -электронами пяти атомов углерода (см. рис. 13.1, в). Таким образом, пиридин является π,π-сопряженной системой и удовлетворяет критериям ароматичности (см. 2.3.2).

В результате большей электроотрицательности по сравнению с атомом углерода пиридиновый атом азота понижает электронную плотность на атомах углерода ароматического кольца, поэтому системы с пиридино-

вым атомом азота называют π-недостаточными. Кроме пиридина, примером таких систем служит пиримидин, содержащий два пиридиновых атома азота.

Пиррол также относится к ароматическим соединениям. Атомы углерода и азота в нем, как и в пиридине, находятся в состоянии sp2-гибридизации. Однако в отличие от пиридина атом азота в пирроле имеет иную электронную конфигурацию (рис. 13.2, а, б).


Рис. 13.2. Пиррольный атом азота (а), распределение электронов по орбиталям (б) и сопряженная система в молекуле пиррола (в) (связи С-Н для упрощения рисунка опущены)

На негибридизованной р -орбитали атома азота находится неподеленная пара электронов. Она участвует в сопряжении с р -электрона- ми четырех атомов углерода с образованием единого шестиэлектронного облака (см. рис. 13.2, в). Три sp2-гибридные орбитали образуют три σ-связи - две с атомами углерода, одну с атомом водорода. Атом азота в таком электронном состоянии получил название пиррольного.

Шестиэлектронное облако в пирроле благодаря р,п -сопряжению делокализовано на пяти атомах цикла, поэтому пиррол представляет собой π-избыточную систему.

В фуране и тиофене ароматический секстет также включает неподеленную пару электронов негибридизованной p-АО кислорода или серы соответственно. В имидазоле и пиразоле два атома азота вносят разный вклад в образование делокализованного электронного облака: пиррольный атом азота поставляет пару и-электронов, а пиридиновый - один p-электрон.

Ароматичностью обладает также пурин, представляющий собой конденсированную систему двух гетероциклов - пиримидина и имидазола.

Делокализованное электронное облако в пурине включает 8 π-электронов двойных связей и неподеленную пару электронов атома N-9. Общее число электронов в сопряжении, равное десяти, соответствует формуле Хюккеля (4n + 2, где п = 2).

Гетероциклические ароматические соединения обладают высокой термодинамической устойчивостью. Неудивительно, что именно они служат структурными единицами важнейших биополимеров - нуклеиновых кислот.

13.2.2. Кислотно-основные и нуклеофильные свойства

Основные свойства гетероциклических соединений обусловлены неподеленной парой электронов гетероатома, способной присоединять протон. Такими свойствами обладает пиридиновый атом азота, у которого n-электроны находятся на sp2-гибридной орбитали и не вступают в сопряжение. Пиридин является основанием и с сильными кислотами образует пиридиниевые соли, подобные аммониевым солям.

Аналогично основные свойства проявляют и другие гетероциклы, содержащие пиридиновый атом азота. Так, имидазол и пиразол образуют соли с минеральными кислотами за счет пиридинового атома азота.

Пиррольный атом азота в молекулах имидазола, пиразола и, естественно, самого пиррола не склонен связывать протон, так как его неподеленная пара электронов является частью ароматического секстета. В результате пиррол практически лишен основных свойств.

В то же время пиррольный атом азота может служить центром кислотности. Пиррол ведет себя, как слабая NH-кислота, поэтому протон будет отщепляться только при действии очень сильных оснований, например амида натрия NaNH 2 или гидрида натрия NaH. За счет пиррольного атома азота в реакциях со щелочными металлами также образуются соли, которые легко гидролизуются.

Таким образом, имидазол и пиразол могут проявлять как основные, так и кислотные свойства, т. е. являются амфотерными соединениями.

Гетероциклы, содержащие пиридиновый атом азота, проявляют и нуклеофильные свойства, т. е. способность атаковать атом углерода, несущий частичный положительный заряд (электрофильный центр). Так, взаимодействие пиридина с галогеноалканами приводит к образованию алкилпиридиниевых солей.

13.2.3. Особенности реакций электрофильного замещения

Пиррол и фуран относятся к π-избыточным системам. У них легче протекают реакции электрофильного замещения по сравнению с бензолом. Следует, однако, учитывать, что сильные кислоты, часто при- меняемые при электрофильном замещении, атакуют атомы углерода

π-избыточных гетероциклов, что приводит к образованию смесей полимерных продуктов, не имеющих практического применения. Способность гетероциклических соединений подвергаться глубоким превращениям под действием кислот называют ацидофобностью (боязнью кислот), а сами гетероциклы - ацидофобными.

Пиридин и другие гетероциклы с пиридиновым атомом азота являются электронодефицитными. Они гораздо труднее, чем бензол, вступают в реакции электрофильного замещения, а некоторые реакции (например, алкилирование по атомам углерода кольца) не идут вовсе. Низкая реакционная способность пиридина обусловлена еще и тем, что в сильнокислых средах, в которых осуществляется электрофильное замещение, пиридин находится в протонированной форме в виде катиона пиридиния C 5 H 5 NH + , что существенно затрудняет электрофильную атаку.

13.3. Пятичленные гетероциклы

13.3.1. Гетероциклы с одним гетероатомом

Важнейшим представителем пятичленных гетероциклов с одним гетероатомом является пиррол. Видимо, неслучайно сам пиррол был первым гетероциклическим соединением, выделенным из природных источников еще в 1834 г. К пиррольным соединениям относят конденсированную систему индола (см. схему 13.1) и полностью насыщенный аналог пиррола - пирролидин, которые входят в состав сложных по структуре молекул хлорофиллов, гема крови и алкалои- дов, например никотина и тропана (см. 13.6). Так, в основе структуры гема и хлорофиллов лежит тетрапиррольная система порфина.

Индол. По химическим свойствам эта ароматическая система очень напоминает пиррол. Индол также ацидофобен и практически лишен основных свойств. При взаимодействии с сильными основаниями ведет себя, как слабая NH-кислота.

Индол является структурным фрагментом белковой аминокислоты триптофана и продуктов его метаболических превращений - триптамина и серотонина, относящихся к биогенным аминам, а также (индол-3-ил)уксусной кислоты (гетероауксина).

Гетероауксин в растительном мире является гормоном роста и применяется в сельском хозяйстве для стимуляции роста растений.

Немало синтетических производных индола применяется в медицине. Примером таких соединений может служить антидепрессант индопан.

Фуран. Соединения фуранового ряда не обнаружены в продуктах метаболизма животных организмов, но они встречаются в растительном мире. Известны многие лекарственные средства, содержащие фурановое ядро, часто в комбинации с другими гетероциклами. Примерами служат противомикробные препараты фурацилин и фуразолидон.


13.3.2. Гетероциклы с двумя гетероатомами

Пятичленные гетероциклы с двумя гетероатомами, один из которых азот, имеют общее название азолы. Важнейшими из них являются имидазол, пиразол и тиазол (см. схему 13.1). Эти соединения, в отличие от пятичленных гетероциклов с одним гетероатомом, не разрушаются при действии кислот (т. е. неацидофобны), а образуют с ними соли (см. 13.2.1).

Имидазол. Этот гетероцикл является структурным фрагментом белковой аминокислоты гистидина и продукта ее декарбоксилирования - биогенного амина гистамина.

Имидазол, конденсированный с бензольным кольцом - бензимидазол - входит в состав ряда природных веществ, в частности витамина В 12 , а также вазодилатирующего средства дибазола (2-бен- зилбензимидазола).

Пиразол. Производные пиразола в природе не обнаружены. Наиболее известным производным пиразола является пиразолон, одна из изомерных форм которого приведена ниже. На основе пиразолона созданы анальгетические средства - анальгин, бутадион и др.

Тиазол. В цикле тиазола содержатся два разных гетероатома. Структура тиазола встречается в составе важных биологически активных веществ - тиамина (витамина В 1) и ряде сульфаниламидных препаратов, например, противомикробного средства фталазола.

Цикл полностью гидрированного тиазола - тиазолидин - является структурным фрагментом пенициллиновых антибиотиков (см. 15.6).

13.4. Шестичленные гетероциклы

13.4.1. Гетероциклы с одним гетероатомом

Пиридин. Этот наиболее типичный представитель ароматических гетероциклов проявляет большинство химических свойств ароматических соединений: легче вступает в реакции замещения, чем присоединения; его атомы углерода устойчивы к действию окислителей. Он термодинамически устойчив.

В то же время гомологи пиридина (аналогично гомологам бензола) легко окисляются в соответствующие пиридинкарбоновые кислоты. Важное значение имеет окисление изомерных метилпиридинов. Так, 3-метилпиридин превращается в никотиновую кислоту, а его 4-изо- мер - в изоникотиновую (пиридин-4-карбоновую) кислоту.

Кстати, никотиновая кислота получила свое название оттого, что была получена при окислении никотина (см. 13.6.1).

Как уже говорилось (см. 13.2.2), пиридин проявляет основные свойства; его основность несколько выше, чем ароматических аминов (например, анилина), но значительно ниже, чем алифатических аминов. Это

связано с тем, что неподеленная пара электронов атома азота занимает sp2-гибридную орбиталь. Атом азота в пиридине более электроотрицателен, чем sp3-гибридизованный атом азота в алифатических аминах, и, следовательно, прочнее удерживает свою электронную пару.

Благодаря пониженной электронной плотности на атомах углерода кольца пиридин может вступать в не характерные для бензола реакции с нуклеофильными реагентами. Наиболее восприимчиво к нуклеофильной атаке кольцо алкилпиридиниевого иона, где электронная плотность на атомах углерода особенно понижена. Так, алкилпиридиниевые соли способны восстанавливаться комплексными гидридами металлов в частично насыщенное производное пиридина, как упрощенно показано ниже.

В 1,4-дигидро-N-метилпиридине ароматичность нарушена, поэтому его молекула обладает большим запасом энергии и стремится путем обратной реакции окисления вновь перейти в ароматическое состояние. Эти реакции окисления-восстановления моделируют действие важного кофермента НАД+, в состав которого входит замещенный катион пиридиния (см. 14.3.2).

Структура полностью насыщенного пиридина - пиперидина - лежит в основе анальгетика промедола.

Важными производными пиридина являются некоторые витамины группы В, выступающие в роли структурных элементов кофер- ментов. Ниже приведены различные формы витамина В 6 , участвующие в виде фосфатов в реакции биосинтеза α-аминокислот (см. Приложение 12-4).

Никотиновая и изоникотиновая кислоты и их производные. Никотиновая кислота и ее амид - никотинамид - известны как две формы витамина РР. Никотинамид является составной частью ферментных систем, ответственных за окислительно-восстановительные процессы в организме, а диэтиламид никотиновой кислоты - кордиамин - служит эффективным стимулятором ЦНС.

На основе изоникотиновой кислоты синтезированы противотуберкулезные средства изониазид (тубазид) - гидразид этой кислоты и его производное фтивазид.


Хинолин и изохинолин. Эти конденсированные системы (см. схему 13.1) по свойствам подобны пиридину: проявляют основные свойства, способны образовывать четвертичные соли.

Ядро хинолина входит в состав противомикробного средства нитроксолина (5-НОК).

13.4.2. Гетероциклы с двумя гетероатомами

В этой группе наиболее важными являются гетероциклы, содержащие два атома азота. Они имеют общее название диазины и различаются взаимным расположением атомов азота.

Эти гетероциклы содержат атомы азота пиридинового типа, поэтому каждый из диазинов представляет собой шестиэлектронную ароматическую систему. Введение второго атома азота в шестичленное кольцо еще больше понижает активность гетероциклического ядра (по сравнению с пиридином) в реакциях электрофильного замещения.

Основность диазинов значительно (на 3-4 порядка) ниже, чем пиридина, поскольку один атом азота выступает в роли электроноакцептора по отношению к другому. Диазины образуют соли только с одним эквивалентом сильной кислоты.

Среди производных диазинов, имеющих биологическое значение и применяемых в медицине, наиболее важны гидрокси- и аминопроизводные пиримидина.

Для 2-гидроксипроизводных гетероциклов, содержащих фрагмент -N=C-OH, типична лактим-лактамная таутомерия как частный случай прототропной таутомерии (см. 9.2.3). Взаимопревращение тауто- мерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную группу ОН, к основному центру - пиридиновому атому азота и обратно. В полярных растворителях и в кристаллическом состоянии лактамные формы явно преобладают, что связано с большим сродством к протону атома азота, нежели атома кислорода.

Три пиримидиновых основания - урацил (2,4-дигидроксипи- римидин), тимин (2,4-дигидрокси-5-метилпиримидин) и цитозин (4-амино-2-гидроксипиримидин) - являются компонентами нуклеотидов и нуклеиновых кислот. Пиримидиновые основания существуют практически только в лактамной форме (лактамный фрагмент выделен цветной рамкой, лактимный - черной).

Очевидно, что в лактимной форме, т. е. гидроксиформе, пиримидиновое ядро ароматично. Однако и в лактамной форме ароматичность не нарушена, так как ароматическая система образована в результате участия в сопряжении неподеленной пары электронов «амидного» атома азота. Разрыв сопряжения в кольце отсутствует.

К производным пиримидина относится барбитуровая кислота (2,4,6-тригидроксипиримидин), которая может существовать в несколь- ких таутомерных формах, три из которых приведены ниже. Структуры (I) и (II) представляют соответственно лактимный и лактамный таутомеры, а структуры (II) и (III) - енольный и кетонный таутомеры. В кристаллическом состоянии барбитуровая кислота имеет строение триоксопроизводного (III), которое преобладает и в растворе.

Барбитуровая кислота легко образует соли при действии щелочей. Ее весьма высокая кислотность (p K a 3,9) обусловлена эффективной делокализацией отрицательного заряда в барбитурат-ионе с участием двух атомов кислорода.

Широкое применение в медицине нашли барбитураты - производные барбитуровой кислоты, у которых в положении 5 находятся два (реже - один) углеводородных заместителя. С начала ХХ в. в качестве снотворных средств использовались барбитал (веронал), фенобарбитал (люминал). Последний применяют в настоящее время как противоэпилептическое средство.

Барбитураты также обладают определенной кислотностью (например, p K a барбитала равен 7,9). Некоторые из них применяются в виде натриевых солей, например барбитал-натрий, что обусловлено хорошей растворимостью таких солей в воде.

Представителем шестичленных гетероциклических соединений с двумя различными гетероатомами (азота и серы) служит фенотиазин.

Важное значение имеют 2,10-дизамещенные производные фенотиазина, составляющие большую группу лекарственных средств психотропного действия. Один из них - аминазин - широко применяется как антипсихотическое средство.

13.5. Конденсированные гетероциклы

Из систем с двумя конденсированными гетероциклами важное значение имеют соединения пуринового ряда, в частности гидроксипурины и аминопурины, принимающие активное участие в процессах жизнедеятельности.

13.5.1. Гидроксипурины

Гипоксантин (6-гидроксипурин), ксантин (2,6-дигидроксипурин) и мочевая кислота (2,6,8-тригидроксипурин) образуются в организме при метаболизме нуклеиновых кислот. Ниже они изображены в лактамной форме, в которой находятся в кристаллическом состоянии.

У гидроксипуринов возможна как лактим-лактамная таутомерия, так и таутомерия азолов, связанная с миграцией атома водорода от атома N-7 к N-9, как показано на примере гипоксантина.

Мочевая кислота - конечный продукт метаболизма пуриновых соединений в организме. Она выделяется с мочой в количестве 0,5-1 г/сут. Мочевая кислота двухосновна, плохо растворима в воде, но легко растворяется в щелочах, образуя соли с одним или двумя эквивалентами щелочи (приведено вероятное строение солей).

Соли мочевой кислоты называют уратами. При некоторых нарушениях в организме они откладываются в суставах, например при подагре, а также в виде почечных камней.

Ксантин и гипоксантин по химическому поведению во многом аналогичны мочевой кислоте. Они амфотерны и образуют соли с кислотами и щелочами.

Метилированные в различной степени по атомам азота производные ксантина обычно относят к алкалоидам (см. 13.6). Это кофе- ин (1,3,7-триметилксантин), теофиллин (1,3-диметилксантин) и тео- бромин (3,7-диметилксантин). Их природными источниками служат листья чая, зерна кофе, бобы какао.

Кофеин - эффективный возбудитель ЦНС, он стимулирует работу сердца. Общестимулирующее действие теофиллина и теобромина выражено меньше, но они обладают довольно сильными мочегонными свойствами.

13.5.2. Аминопурины

Из аминопуринов наиболее важны аденин (6-аминопурин) и гуанин (2-амино-6-гидроксипурин), являющиеся структурными фрагмента- ми нуклеиновых кислот. Аденин также входит в состав некоторых

коферментов (см. 14.3). Преобладающей таутомерной формой гуанина является лактамная. Для обоих соединений возможна и таутомерия азолов в результате миграции атома водорода между атомами

N-7 и N-9.

При действии на аденин азотистой кислоты HNO 2 происходит его дезаминирование (см. 4.3) с образованием гипоксантина. Аналогичная реакция в случае гуанина приводит к ксантину.

13.6. Алкалоиды

Алкалоидами называют основные азотсодержащие вещества природного (главным образом растительного) происхождения.

Благодаря высокой фармакологической активности алкалоиды известны с давних времен и используются в медицине. Хрестоматийным примером служит применение с середины XVII в. хинина, выделяемо- го из коры хинного дерева, для лечения малярии.

Почти все алкалоиды имеют в структуре атом азота. Это обусловливает основные свойства алкалоидов, что нашло отражение в их групповом названии (от араб. al-qali - щелочь). В растениях алкалоиды содержатся в виде солей органических кислот - лимонной, яблочной, щавелевой и др.

Важнейшим структурным фрагментом большинства алкалоидов служит какой-либо азотсодержащий гетероцикл. Этот признак положен в основу химической классификации алкалоидов, по которой они подразделяются на группы в соответствии с типом гетероцикла в их структуре, например пиридина, хинолина и т. д. Такие алкалоиды имеют единство в биогенетическом происхождении от аминокислот, их называют истинными алкалоидами.

Наряду с этим существуют алкалоиды, у которых атом азота не включен в гетероциклическую структуру. Эти алкалоиды представляют собой растительные амины, их относят к протоалкалоидам.

При большом разнообразии структур алкалоидов в качестве общего химического свойства можно выделить реакции солеобразования. Эти реакции используют в двух направлениях:

Для получения хорошо растворимых в воде солей, например, с минеральными кислотами (хлориды, ацетаты);

Для получения окрашенных солей с ограниченной растворимостью (с органическими и неорганическими кислотами).

Первое направление используется главным образом для извлечения алкалоидов из природных источников, второе - в аналитических целях для качественного обнаружения алкалоидов.

13.6.1. Алкалоиды группы пирролидина, пиридина и пиперидина

Никотин - весьма токсичный алкалоид, содержание которого в листьях табака доходит до 8%. Включает связанные простой связью

ядра пиридина и пирролидина. Воздействует на вегетативную нервную систему, сужает кровеносные сосуды.

Никотиновая кислота (одна из форм витамина РР) является одним из продуктов окисления никотина и используется для синтеза других препаратов.

Лобелин и родственные ему алкалоиды обнаружены в североамериканском растении лобелия. Они близки по структуре и используются в медицине в качестве эффективных рефлекторных стимуляторов дыхания.

13.6.2. Алкалоиды группы тропана

Базовая структура алкалоидов этой группы - тропан - является бициклическим соединением, в состав которого входят пирролидино- вое и пиперидиновое кольца.

К тропановым алкалоидам относятся атропин и кокаин, применяемые в медицине как холиноблокаторы.

Атропин содержится в растениях семейства пасленовых: красавке, белене, дурмане. Несмотря на высокую токсичность, он широко применяется в глазной практике, благодаря способности расширять зрачок.

Кокаин - основной алкалоид южноамериканского кустарника Erythroxylon coca Lam. Это одно из первых используемых в медицине анестезирующих и наркотических средств. Синтетические аналоги кокаина, лишенные наркотических свойств, являются производными п-аминобензойной кислоты (см. 9.3).

13.6.3. Алкалоиды группы хинолина и изохинолина

Наибольшую известность из хинолиновых алкалоидов получил хинин, выделенный из коры хинного дерева. В состав хинина входят две гетероциклические системы - хинолиновая и хинуклидиновая.

Хинин используется в медицине более 300 лет в качестве противомалярийного средства. В настоящее время из-за ряда негативных побочных эффектов его использование сократилось и на смену ему пришли новые синтетические противомалярийные препараты.

Ядро изохинолина содержится в алкалоидах опия, представляющего собой высохший млечный сок незрелых коробочек мака опийного. Основной из них - морфин - обладает сильным обезболивающим свойством, но при длительном употреблении вызывает привыкание. Морфин был первым алкалоидом, выделенным в чистом виде (1806) и был назван по имени бога сна и сновидений Морфея.

Монометиловый эфир морфина - кодеин - оказывает противокашлевое действие, а диацетильное производное - героин - наркотик.

Другим алкалоидом группы изохинолина, также выделенным изопия, служит папаверин, применяемый в качестве эффективного спазмолитического средства. Синтетический аналог папаверина ношпа имеет с ним явное структурное сходство.

13.6.4. Протоалкалоиды

В эту группу алкалоидов входят растительные основания, не имеющие в своей структуре какого-либо гетероцикла. Важнейшим их представителем является эфедрин, выделяемый из различных видов эфедры.

В молекуле эфедрина содержатся два хиральных центра, в соответствии с этим эфедрин существует в виде четырех стереоизомеров и двух рацематов. Наибольшей фармакологической активностью обладает природный эфедрин, являющийся одним из стереизомеров.

Гетероциклическими называют такие соединения циклического строения, в циклах которых наряду с атомами углерода находятся атомы других элементов. Эти другие атомы называются гетероатомами. Чаще всего такими гетероатомами являются атомы кислорода, серы и азота. В гетероциклах может находиться один, два, три и более гетероатомов. Однако, согласно теории напряжения циклов, трех- и четырехчленные циклы малоустойчивы. Наиболее прочные и поэтому чаще встречаются пяти- и шестичленные гетероциклы.

Классификацию гетероциклов осуществляют в зависимости от величины цикла. В соответствии с этим различают трех-, четырех-, пяти-, шестичленные гетероциклы и гетероциклы с большим количеством атомов.

Гетероциклические соединения многочисленны, очень распространенны в природе и имеют важное практическое значение. К ним относятся такие вещества, как хлорофилл - зеленое вещество растений, гемоглобин - окрашивающее вещество крови и много других природных красящих веществ, витамины, антибиотики (пенициллин), лекарственные вещества, пестициды.

Номенклатура гетероциклов

Гетероциклические соединения называют по тривиальной, рациональной и систематической номенклатуре. Для давно известных гетероциклических соединений часто используют тривиальные названия. Например, пиррол, пиридин, фуран, индол, пурин и др. В рациональной номенклатуре за основу берут название определенного гетероцикла - фуранов, тиофена, пиррола, пиридина или другого, а положение заместителей в них обозначают цифрами или буквами греческого алфавита. В гетероциклах с одним гетероатомом нумерацию начинают с этого гетероатома.

Рисунок 1.

Современная научная номенклатура гетероциклических систем включает величину цикла, его ненасыщенность, количество гетероатомов, их вид и положение. Название гетероцикла по этой номенклатуре состоит из трех частей:

  • корня - указывает размер цикла,
  • суффикса - указывает степень ненасыщенности гетероциклического системы
  • и приставки - указывает вид гетеро атомов и их количество.

Трехчленное кольцо имеет корень -ир, четырехчленное - -ет, пятичленное - -ол, шестичленное - ин. Насыщенные гетероциклы с атомом азота имеют суффикс -идин, насыщенные гетероциклы без атома азота имеют суффикс -ан, насыщенные гетероциклические системы имеют суффикс -ин.

Природа гетероатома указывается приставками окса-, тиа- и аза- соответственно для кислорода, серы и азота префиксы диокса-, дитиа-, диаза- означают соответственно два атома кислорода, серы и азота. Если в гетероцикле два и более разных гетероатомов, то они перечисляются по старшинству кислород раньше серы, а сера раньше азота, и их нумеруют в следующем порядке: $O$, $S$, $N$.

При наличии в гетероцикле одного атома кислорода и одного атома азота используют префикс - оксаза-, а при наличии одного атома серы и одного атома азота - тиаза-. При одновременном пребывании в цикле третичного атома азота и группы $NH$ цифрой 1 обозначают атом азота группы $NH$. В этом случае нумерацию проводят в следующем порядке: $O$, $S$, $NH$, $N$.

Гетероциклы, которые не содержат крайних связей, как правило, по химическим и физическим свойствам похожи на соответствующие циклические соединения.

Ароматиченость гетероциклов

Существует огромная группа гетероциклов, которые имеют сопряженную систему кратных связей. Такого рода гетероциклы напоминают по своей стойкостью и типами реакций бензол и его производные и называются ароматическими гетероциклическими соединениями.

Согласно правилу Хюккеля, циклическая система имеет ароматические свойства, если она:

  • содержит $4n + 2$ обобщающих электронов;
  • имеет непрерывную цепь сопряжения;
  • является планарный.

Сравним два соединения - бензол и пиридин:

Рисунок 2.

Рисунок 3.

В молекуле бензола атомы углерода находятся в состоянии $sp2$ - гибридизации. Четвертый электрон каждого атома С является не гибридизующимся. При этом образуется секстет электронов, обобщенных всеми атомами цикла (ароматический секстет).

Облака негибридизованих $\pi$-электронов, имеющих форму объемных восьмерок, перекрываясь друг с другом, образуют единое $\pi$-электронное облако:

Рисунок 4.

Аналогично можно объяснить ароматический характер пиридина. Только в образовании электронного секстета в природе участвуют 5$\pi$-электронов от атомов углерода и один электрон от азота:

Рисунок 5.

В атоме азота сохраняется неразделенная пара электронов. Эта пара электронов не входит в ароматический секстет; система планарная; соответствует правилу Хюккеля: $4n + 2$.

Электронное строение пятичленных гетероциклов

Рассмотрим электронное строение пятичленного гетероцикла - пиррола, образованного четырьмя атомами углерода и атомом азота, и содержит два двойных связи:

Рисунок 6.

В молекуле пиррола также образуется ароматический секстет за счет четырех $\pi$-электронов атомов углерода и двух неразделенных р-электронов атома азота. Таким образом в ядре образуется общая система секстета электронов и ядро имеет ароматические свойства. Выполняется первое правило ароматичности: содержится $4n + 2 = 4\cdot1 + 2 = 6$ обобщенных электронов. Выполняется и второе условие ароматичности - сохраняется непрерывная цепь сопряжения, в которую входит неразделенная пара электронов атома азота. Все атомы лежат в одной плоскости, система планарная. Таким образом, в пятичленных гетероциклах 6 электронов делокализованных между 5-ю атомами, образующими данный цикл.

Рисунок 7.

Из пятичленных гетероциклических соединений с одним гетероатомом важнейшее значение имеют: фуран, тиофен и пиррол. Для фурана, тиофена, пиррола и их производных типичны реакции электрофильного замещения : нитрование, сульфирование, галогенирование, ацилирование и др. Такая особенность свойств этих гетероциклических соединений связана с их электронным строением. В циклах этих веществ содержатся как атомы углерода, так и гетероатомы. Углеродные атомы и гетероатомы соединены с соседними атомами углерода $\sigma$-связями.

Другие ароматические гетероциклические соединения

Поскольку в полициклических соединениях на гетероатомы могут быть заменены атомы углерода разных циклов и в самых различных комбинациях, число возможных ароматических гетероциклических соединений исключительно велико:

Рисунок 8.

Помимо гетероциклических систем, которые содержат в каждом кольце по шесть $\pi$-электронов, известны многочисленные примеры ароматических ($4n+2$) p-элеткронных гетероциклических соединений, в которых $n >1$. Известны гетероциклические аналоги ароматических аннуленов. В качестве примеров можно привести окса--аннулен, аза--аннулен, аза--аннулен, изоэлектронные ароматическому -аннулену:

Рисунок 9.

Рисунок 10.

Другим наглядным примером ароматического гетероаннулена является мостиковый гомохинолин, изоэлектронный 1,6-метано -аннулену, содержащий 10 p-электронов:

Рисунок 11.

Рассказать друзьям