Фасадные паропроницаемые материалы. Сопротивление паропроницанию материалов и тонких слоев пароизоляции

💖 Нравится? Поделись с друзьями ссылкой

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов .

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом


Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости : µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

В последнее время все большее применение в строительстве находят разнообразные системы наружного утепления: "мокрого" типа; вентилируемые фасады; модифированная колодезная кладка и т.д. Всех их объединяет то, что это многослойные ограждающие конструкции. А для многослойных конструкций вопросы паропроницаемости слоев, переноса влаги, количественной оценки выпадающего конденсата являются вопросами первостепенной важности.

Как показывает практика, к сожалению, что этим вопросам как проектировщики, так и архитекторы не уделяют должного внимания.

Мы уже отмечали, что российский строительный рынок перенасыщен импортными материалами. Да, безусловно, законы строительной физики одни и те же, и действуют одинаково, например, как в России, так и в Германии, но методики подхода и нормативная база, очень часто, весьма различны.

Поясним это на примере паропроницаемости. DIN 52615 вводит понятие паропроницаемости через коэффициент паропроницаемости μ и воздушный эквивалентный промежуток s d .

Если сравнить паропроницаемость слоя воздуха толщиной 1 м с паропроницаемостью слоя материала той же толщины, то получим коэффициент паропроницаемости

μ DIN (безразмерный) = паропроницаемость воздуха/паропроницаемость материала

Сравните, понятие коэффициента паропроницаемости μ СНиП в России вводится через СНиП II-3-79* "Строительная теплотехника", имеет размерность мг / (м * ч * Па) и характеризует то количество водяного пара в мг, которое проходит через один метр толщины конкретного материала за один час при разности давлений в 1 Па.

Каждый слой материала в конструкции имеет свою конечную толщину d , м. Очевидно, что количество водяного пара, прошедшего через этот слой будет тем меньше, чем больше его толщина. Если перемножить μ DIN и d , то и получим, так называемый, воздушный эквивалентный промежуток или диффузно-эквивалентную толщину слоя воздуха s d

s d = μ DIN * d [м]

Таким образом, по DIN 52615, s d характеризует толщину слоя воздуха [м], которая обладает равной паропроницаемостью со слоем конкретного материала толщиной d [м] и коэффициентом паропроницаемости μ DIN . Сопротивление паропроницанию 1/Δ определяется как

1/Δ= μ DIN * d / δ в [(м² * ч * Па) / мг],

где δ в - коэффициент паропроницаемости воздуха.

СНиП II-3-79* "Строительная теплотехника" определяет сопротивление паропроницанию R П как

R П = δ / μ СНиП [(м² * ч * Па) / мг],

где δ - толщина слоя, м.

Сравните, по DIN и СНиП сопротивления паропроницаемости, соответственно, 1/Δ и R П имеют одну и ту же размерность.

Мы не сомневаемся, что нашему читателю уже понятно, что вопрос увязки количественных показателей коэффициента паропроницаемости по DIN и СНиП лежит в определении паропроницаемости воздуха δ в .

По DIN 52615 паропроницаемость воздуха определяется как

δ в =0,083 / (R 0 * T) * (p 0 / P) * (T / 273) 1,81 ,

где R 0 - газовая постоянная водяного пара, равная 462 Н*м/(кг*К);

T - температура внутри помещения, К;

p 0 - среднее давление воздуха внутри помещения, гПа;

P - атмосферное давление при нормальном состоянии, равное 1013,25 гПа.

Не вдаваясь глубоко в теорию, отметим, что величина δ в в незначительной степени зависит от температуры и может с достаточной точностью при практических расчетах рассматриваться как константа, равная 0,625 мг/(м*ч*Па) .

Тогда, в том случае, если известна паропроницаемость μ DIN легко перейти к μ СНиП , т.е. μ СНиП = 0,625/ μ DIN

Выше мы уже отмечали важность вопроса паропроницаемости для многослойных конструкций. Не менее важным, с точки зрения строительной физики, является вопрос последовательности слоев, в частности, положение утеплителя.

Если рассматривать вероятность распределения температур t , давления насыщенного пара Рн и давления ненасыщенного (реального) пара Pp через толщу ограждающей конструкции, то с точки зрения процесса диффузии водяного пара наиболее предпочтительна такая последовательность расположения слоев, при которой сопротивление теплопередаче уменьшается, а сопротивление паропроницанию возрастает снаружи внутрь.

Нарушение этого условия, даже без расчета, свидетельствует о возможности выпадения конденсата в сечении ограждающей конструкции (рис. П1).

Рис. П1

Отметим, что расположение слоев из различных материалов не влияет на величину общего термического сопротивления, однако, диффузия водяного пара, возможность и место выпадения конденсата предопределяют расположение утеплителя на внешней поверхности несущей стены.

Расчет сопротивления паропроницаемости и проверку возможности выпадения конденсата необходимо вести по СНиП II-3-79* "Строительная теплотехника".

В последнее время пришлось столкнуться с тем, что нашим проектировщикам предоставляются расчеты, выполненные по зарубежным компьютерным методикам. Выскажем свою точку зрения.

· Такие расчеты, очевидно, не имеют юридической силы.

· Методики рассчитаны на более высокие зимние температуры. Так, немецкая методика "Bautherm" уже не работает при температурах ниже -20 °С.

· Многие важные характеристики в качестве начальных условий не увязаны с нашей нормативной базой. Так, коэффициент теплопроводности для утеплителей дается в сухом состоянии, а по СНиП II-3-79* "Строительная теплотехника" должен браться в условиях сорбционной влажности для зон эксплуатации А и Б.

· Баланс набора и отдачи влаги рассчитывается для совершенно других климатических условий.

Очевидно, что количество зимних месяцев с отрицательными температурами для Германии и, скажем, для Сибири совершенно не совпадают.

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов - это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие - не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

пенополиуретан

минеральная вата

железобетон, бетон

сосна или ель

керамзит

пенобетон, газобетон

гранит, мрамор

гипсокартон

дсп, осп, двп

пеностекло

рубероид

полиэтилен

линолеум

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов

Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Сергей Новожилов - эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.


1. Минимизировать отбор внутреннего пространства может только утеплитель с наименьшим коэффициентом теплопроводности

2. К сожалению аккумулирующую теплоемкость массива наружной стены мы теряем навсегда. Но здесь есть свой выигрыш:

А) нет необходимости тратить энергоресурсы на нагрев этих стен

Б) при включении даже самого маленького обогревателя в помещении почти сразу станет тепло.

3. В местах соединения стены и перекрытия „мостики холода” можно убрать, если утеплитель наносить частично и на плиты перекрытия с последующим декорированием этих примыканий.

4. Если Вы все еще верите в "дыхание стен", то ознакомьтесь, пожалуйста с ЭТОЙ статьей. Если нет, то тут очевидный вывод: теплоизоляционный материал должен очень плотно быть прижат к стене. Еще лучше, если утеплитель станет единым целым со стеной. Т.е. между утеплителем и стеной не будет никаких зазоров и щелей. Таким образом влага из помещения не сможет попасть в зону точки росы. Стена всегда будет оставаться сухой. Сезонные колебания температур без доступа влаги не будут оказывать негативного влияния на стены, что увеличит их долговечность.

Все эти задачи может решить только напыляемый пенополиуретан.

Обладая самым низким коэффициентом теплопроводности из всех существующих теплоизоляционных материалов, пенополиуретан займет минимум внутреннего пространства.

Способность пенополиуретана надежно прилипать к любым поверхностям позволяет легко нанести его на потолок для уменьшения "мостиков холода".

При нанесении на стены пенополиуретан, находясь некоторое время в жидком состоянии, заполняет все щели и микрополости. Вспениваясь и полимеризуясь непосредственно в точке нанесения пенополиуретан становится единым целым со стеной, перекрывая доступ разрушительной влаге.

ПАРОПРОНИЦАЕМОСТЬ СТЕН
Сторонники лжеконцепции «здорового дыхания стен» помимо греха против истины физических законов и осознанного введения в заблуждение проектировщиков, строителей и потребителей, исходя из меркантильного побуждения, сбыть свой товар какими угодно методами, наговаривают и возводят поклеп на теплоизоляционные материалы с низкой паропроницаемостью (пенополиуретан) или теплоизоляционный материал и вовсе паронепроницаемый (пеностекло).

Суть этой злостной инсинуации сводится к следующему. Вроде как, если не будет пресловутого «здорового дыхания стен», то в таком случае внутреннее помещение обязательно станет сырым, а стены будут сочиться влагой. Дабы развенчать эту выдумку давайте посмотрим более внимательно на те физические процессы, которые будут происходить в случае облицовки под штукатурный слой или использовании внутри кладки, например такого материала как пеностекло, паропроницаемость которого равна нулю.

Итак, из-за присущих пеностеклу теплоизоляционных и герметизирующих свойств наружный слой штукатурки или кладки придет в равновесное температурное и влажностное состояние с наружной атмосферой. Также и внутренний слой кладки войдет в определенный баланс с микроклиматом внутренних помещений. Процессы диффузии воды, как в наружном слое стены, так и во внутреннем; будут носить характер гармонической функции. Эта функция будет обуславливаться, для наружного слоя, суточными перепадами температур и влажности, а также сезонными изменениями.

Особенно интересно в этом отношении поведение внутреннего слоя стены. Фактически, внутренняя часть стены будет выступать в роли инерционного буфера, роль которого сглаживать резкие изменения влажности в помещении. В случае резкого увлажнения помещения, внутренняя часть стены будет адсорбировать излишнюю влагу, содержащуюся в воздухе, не давая влажности воздуха достичь предельного значения. В тоже время, при отсутствии выделения влаги в воздух в помещении, внутренняя часть стены начинает высыхать при этом, не давая воздуху «пересохнуть» и уподобится пустынному.

Как благоприятный результат подобной системы утепления с использованием пенополиуретана гармоника колебания влажности воздуха в помещении сглаживается и тем самым гарантирует стабильное значение (с незначительными флуктуациями) приемлемой для здорового микроклимата влажности. Физика данного процесса достаточно хорошо изучена развитыми строительными и архитектурными школами мира и для достижения подобного эффекта при использовании волоконных неорганических материалов в качестве утеплителя в закрытых системах утепления настоятельно рекомендуется наличие надежного паронипроницаемого слоя на внутренней стороне системы утепления. Вот вам и «здоровое дыхание стен»!

С целью ее разгромождения

Расчеты единиц паропроницаемости и сопротивления паропроницанию. Технические характеристики мембран.

Часто, вместо величины Q используют величину сопротивления паропроницанию, по нашему это Rп (Па*м2*ч/мг), зарубежное Sd (м). Сопротивление паропроницанию обратная величина Q. При том импортная Sd - та же Rп, только выраженная в виде эквивалентного диффузионного сопротивления паропроницанию слоя воздуха (эквивалентная диффузионная толщина воздуха).
Вместо того чтобы дальше рассуждать словами соотнесем Sd и Rп численно.
Что значит Sd=0,01м=1см?
Это значит что плотность диффузионного потока при перепаде dP составляет:
J=(1/Rп)*dP=Dv*dRo/Sd
Здесь Dv=2,1e-5м2/с коэффициент диффузии водяного пара в воздухе (взятый при 0градC)/
Sd - наше самое Sd, а
(1/Rп)=Q
Преобразуем правое равенство воспользовавшись законом идеального газа (P*V=(m/M)*R*T => P*M=Ro*R*T => Ro=(M/R/T)*P)и видим.
1/Rп=(Dv/Sd)*(M/R/T)
Отсюда пока не понятное нам Sd=Rп*(Dv*M)/(RT)
Чтобы получить верный результат нужно все представить в единицах Rп,
точнее Dv=0,076 м2/ч
M=18000 мг/моль - молярная масса воды
R=8,31 Дж/моль/К - универсальная газовая постоянная
T=273К - температура по шкале Кельвина, соответствующая 0градC где и будем вести расчеты.
Итак, все подставляя имеем:

Sd= Rп*(0,076*18000)/(8,31*273)=0,6Rп или наоборот:
Rп=1,7Sd.
Здесь Sd - тот самый импортный Sd [м], а Rп [Па*м2*ч/мг] - наше сопротивление паропроницанию.
Также Sd можно связать с Q - паропроницаемостью.
Имеем, что Q=0,56/Sd , здесь Sd [м], а Q [мг/(Па*м2*ч)].
Проверим полученные соотношения. Для этого возьме технические характеристики различных мембран и подставим.
Для начала возьму данные по Tyvek отсюда
Данные в итоге интересные, но не очень пригодные для проеврки формул.
В частности для мембраны Soft получаем Sd=0,09*0,6=0,05м. Т.е. Sd в таблице занижен в 2,5 раза или, соответсвенно завышен Rп.

Беру дальше данные с просторов интернета. По мембране Fibrotek
Воспользуюсь последней парой данных проницаемость, в данном случае Q*dP=1200 г/м2/сут, Rп=0,029 м2*ч*Па/мг
1/Rп=34,5 мг/м2/ч/Па=0,83 г/м2/сут/Па
Отсюда вытащим перепад абсолютной влажности dP=1200/0,83=1450Па. Данная влажность соответствует точке росы 12,5град или влажности 50% при 23град.

На просторах интернета также обнаружил на ином форуме фразу:
Т.е. 1740 нг/Па/с/м2=6,3 мг/Па/ч/м2 соответствует паропроницаемости ~250г/м2/сут.
Попробую получить такое соотношение сам. Упоминается, что величина в г/м2/сут измеряется в том числе при 23град. Берем полученную ранее величину dP=1450Па и имеем приемлемое схождение результатов:
6,3*1450*24/100=219 г/м2/сут. Ура-ура.

Итак, теперь мы умеем соотносить паропроницаемость которую можете встретить в таблицах и сопротивление паропроницанию.
Осталось еще убедится что полученное выше соотношение между Rп и Sd верно. Пришлось порыться и нашел мембрану для которой приведены обе величины (Q*dP и Sd), при том Sd конкретная величина, а не "неболее". Перфорированная мембрана на основе ПЭ пленки
И вот данные:
40,98 г/м2/сут => Rп=0,85 =>Sd=0,6/0,85=0,51м
Опять не сходится. Но в принципе результат недалек, что учитывая то что неизвестно при каких параметрах определена паропроницаемость вполне нормально.
Что интересно, по Tyvek получили несхождение в одну сторону, по IZOROL в другую. Что говорит о том что везде каким-то величинам доверять нельзя.

PS Буду признателен за поиски ошибок и сравнений с иными данными и нормативами.

Рассказать друзьям