Минеральные полимеры. Строение неорганических полимеров

💖 Нравится? Поделись с друзьями ссылкой

В природе существуют элементоорганические, органические и неорганические полимеры. К неорганическим относят материалы, главная цепь которых неорганическая, а боковые ответвления не являются углеводородными радикалами. К формированию полимеров неорганического происхождения наиболее склонны элементы III-VI групп периодической системы химических элементов.

Классификация

Органические и неорганические полимеры активно исследуются, определяются их новые характеристики, поэтому четкой классификации этих материалов еще не выработано. Впрочем, можно выделить определенные группы полимеров.

В зависимости от структуры:

  • линейные;
  • плоские;
  • разветвленные;
  • полимерные сетки;
  • трехмерные и другие.

В зависимости от атомов главной цепи, образующих полимер:

  • гомоцепные типа (-M-)n - состоят из одного вида атомов;
  • гетероцепные типа (-M-L-)n - состоят из различных видов атомов.

В зависимости от происхождения:

  • природные;
  • искусственные.

Для отнесения к неорганическим полимерам веществ, которые в твердом состоянии представляют собой макромолекулы, необходимо также наличие в них определенной анизотропии пространственного строения и соответствующих свойств.

Основные характеристики

Более распространенными являются гетероцепные полимеры, в которых происходит чередование электроположительных и электроотрицательных атомов, например B и N, P и N, Si и O. Получить гетероцепные неорганические полимеры (НП) можно с помощью реакций поликонденсации. Поликонденсация оксоанионов ускоряется в кислой среде, а поликонденсация гидратированных катионов - в щелочной. Поликонденсация может быть проведена как в растворе, так и в при наличии высокой температуры.

Многие из гетероцепных неорганических полимеров можно получить только в условиях высокотемпературного синтеза, например, непосредственно из простых веществ. Образование карбидов, которые являются полимерными телами, происходит при взаимодействии некоторых оксидов с углеродом, а также при наличии высокой температуры.

Длинные гомоцепные цепи (со степенью полимеризации n>100) образуют карбон и p-элементы VI группы: сера, селен, теллур.

Неорганические полимеры: примеры и применение

Специфика НП заключается в образовании полимерных с регулярной трехмерной структурой макромолекул. Наличие жесткого каркаса химических связей предоставляет таким соединениям значительную твердость.

Указанное свойство позволяет использовать в качестве неорганические полимеры. Применение этих материалов нашло широчайшее применение в промышленности.

Исключительная химическая и термическая стойкость НП является также ценным свойством. Например, армирующие волокна, изготовленные из органических полимеров, устойчивы на воздухе до температуры 150-220 ˚С. Между тем борное волокно и его производные остаются устойчивыми до температуры 650 ˚С. Именно поэтому неорганические полимеры являются перспективными для создания новых химически и термостойких материалов.

Практическое значение также имеют НП, которые одновременно являются и приближающимися по свойствам к органическим, и сохраняющими свои специфические свойства. К таким относят фосфаты, полифосфазены, силикаты, полимерные с различными боковыми группами.

Полимеры углерода

Задание: «Приведите примеры неорганических полимеров», - часто встречается в учебниках по химии. Целесообразно его выполнять с упоминанием самых выдающихся НП - производных углерода. Ведь сюда входят материалы с уникальными характеристиками: алмазы, графит и карбин.

Карбин - искусственно созданный, малоизученный линейный полимер с непревзойденными показателями прочности, не уступающими, а согласно ряду исследований и превосходящими графен. Впрочем, карбин - вещество таинственное. Ведь не все ученые признают его существование как самостоятельного материала.

Внешне выглядит как металло-кристаллический черный порошок. Имеет полупроводниковые свойства. Электропроводность карбина значительно увеличивается под действием света. Он не теряет этих свойств даже при температуре до 5000 ˚С, что намного выше, чем для других материалов подобного назначения. Получен материал в 60-х В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным и Ю.П. Кудрявцевым путем каталитического окисления ацетилена. Самое сложное было определить вид связей между атомами углерода. Впоследствии было получено вещество только с двойными связями между атомами углерода в Институте элементоорганических соединений АН СССР. Новое соединение назвали поликумулен.

Графит - в этом упорядоченность распространяется только в плоскости. Его слои соединены не химическими связями, а слабыми межмолекулярными взаимодействиями, поэтому он проводит тепло и ток и не пропускает свет. Графит и его производные - достаточно распространенные неорганические полимеры. Примеры их использования: от карандашей до атомной промышленности. Окисляя графит, можно получить промежуточные продукты окисления.

Алмаз - его свойства принципиально другие. Алмаз является пространственным (трехмерным) полимером. Все атомы углерода скрепляются между собой прочными ковалентными связями. Потому этот полимер является чрезвычайно прочным. Алмаз не проводит ток и тепло, имеет прозрачную структуру.

Полимеры бора

Если вас спросят о том, какие неорганические полимеры вам известны, смело отвечайте - полимеры бора (-BR-). Это достаточно обширный класс НП, широко применяемый в промышленности и науке.

Карбид бора - его формула правильнее выглядит так (B12C3)n. Его элементарная ячейка - ромбоэдрическая. Каркас образуют двенадцать ковалентно связанных атомов бора. А в середине его - линейная группа из трех ковалентно связанных атомов углерода. В результате образуется очень прочная конструкция.

Бориды - их кристаллы образованы подобно вышеописанному карбиду. Наиболее стойкий из них HfB2, который плавится только при температуре 3250 °C. Наибольшей химической стойкостью отмечается TaB2 - на него не действуют ни кислоты, ни их смеси.

Нитрид бора - его часто называют белым тальком за сходство. Это сходство действительно лишь внешнее. Структурно он аналогичен графиту. Получают его, нагревая бор или его оксид в атмосфере аммиака.

Боразон

Эльбор, боразон, киборит, кингсонгит, кубонит - сверхтвердые неорганические полимеры. Примеры их применения: изготовление абразивных материалов, обработка металлов. Это химически инертные вещества на основе бора. По твердости ближе прочих материалов к алмазам. В частности, боразон оставляет царапины на алмазе, последний тоже оставляет царапины на кристаллах боразона.

Впрочем, эти НП имеют несколько преимуществ перед натуральными алмазами: у них большая термостойкость (выдерживают температуру до 2000 °C, алмаз же разрушается при показателях в пределах 700-800 °C) и высокая устойчивость к механическим нагрузкам (они не такие хрупкие). Боразон был получен при температуре 1350 °C и давлении 62000 атмосфер Робертом Венторфом в 1957 году. Аналогичные материалы ленинградскими учеными были получены в 1963 году.

Неорганические полимеры серы

Гомополимер - эта модификация серы имеет линейную молекулу. Вещество не является устойчивым, при колебаниях температуры распадается на октаэдрические циклы. Образуется в случае резкого охлаждения расплава серы.

Полимерная модификация сернистого ангидрида. Очень похожа на асбест, имеет волокнистую структуру.

Полимеры селена

Серый селен - полимер со спиралевидными линейными макромолекулами, вложенными параллельно. В цепях атомы селена связаны ковалентно, а макромолекулы связаны молекулярными связями. Даже расплавленный или растворенный селен не распадается на отдельные атомы.

Красный или аморфный селен тоже полимер цепной, но малоупорядоченной структуры. В температурном промежутке 70-90 ˚С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние, чем напоминает органические полимеры.

Карбид селена, или горный хрусталь. Термически и химически устойчивый, достаточно прочный пространственный кристалл. Пьезоэлектрик и полупроводник. В искусственных условиях его получили при реакции и угля в электропечи при температуре около 2000 °C.

Прочие полимеры селена:

  • Моноклинный селен - более упорядоченный, чем аморфный красный, но уступает серому.
  • Диоксид селена, или (SiO2)n - представляет собой трехмерный сетчатый полимер.
  • Асбест - полимер оксида селена волокнистой структуры.

Полимеры фосфора

Существует много модификаций фосфора: белый, красный, черный, коричневый, фиолетовый. Красный - НП мелкокристаллического строения. Получается нагревом белого фосфора без доступа воздуха при температуре 2500 ˚С. Черный фосфор получен П. Бриджменом при следующих условиях: давление 200000 атмосфер при температуре 200 °C.

Фосфорнитридхлориды - соединения фосфора с азотом и хлором. Свойства этих веществ меняются с ростом массы. А именно уменьшается их растворимость в органических веществах. Когда молекулярная масса полимера достигает нескольких тысяч единиц, образуется каучукоподобное вещество. Это единственный достаточно термостойкий безуглеродный каучук. Он разрушается только при температуре свыше 350 °C.

Вывод

Неорганические полимеры в большинстве своем - вещества с уникальными характеристиками. Их применяют на производстве, в строительстве, для разработки инновационных и даже революционных материалов. По мере изучения свойств известных НП и создания новых, сфера их применения расширяется.

Теоретически возможно существование неорганических полимеров, образованных химическими элементами III-VI групп системы элементов.

Наиболее важным химическим элементом для создания неорганических полимеров является кислород - самый распространенный на земле элемент. Он легко создает гетероцепные элементооксановые высокомолекулярные соединения, поэтому полиэлементооксаны являются основным классом гетероцепных безуглеродных, или неорганических, полимеров.

К неорганическим полимерам относят все безуглеродные полиэлементооксаны со связями типа Р-О, В-О, S-О, Si-О, А1-О и др., а также многие безуглеродные гетероядерные соединения типа боридов, сульфидов, силицидов, карбидов и др.

Общепринято, что к высокомолекулярным соединениям относятся вещества, состоящие из атомов, связанных в макромолекулярную структуру ковалентными связями. Установлено, что содержание ковалентных связей в неорганических полимерах составляет от 50 до 80%.

Макромолекулы неорганических полимеров могут быть не только гетероцепными, но и гомоатомными. Хорошо известны органические гомоатомные полимеры углерода - алмаз и графит, о которых говорилось выше (гл. 4).

Менее известны гомоатомные неорганические полимеры серы, селена, теллура. Гомоатомные полимеры серы имеют молекулярную массу от 5000 до 300 000, температуру стеклования 248-250 К и проявляют высокоэластические свойства при температуре 273-353 К. Но большинство химических элементов не способно к образованию устойчивых гомоатомных высокомолекулярных соединений.

Гетероцепные неорганические полимеры известны значительно шире. Благодаря своему строению они более стабильны и устойчивы к различным воздействиям.

Гетероцепные неорганические полимеры, так же как и органические, могут иметь линейное и сетчатое строение. К линейным относятся силикатные стекла на основе оксида кремния, полифосфаты и полибораты (соединения на основе солей полифосфорной и поли- борной кислот соответственно). Высокомолекулярную природу силикатов наш великий соотечественник Д.И. Менделеев предсказал еще в XIX в. и писал о кремнеземе как о полимере.

Другой неорганический гетероцепной полимер на основе диоксида кремния - кварц - имеет трехмерное сетчатое строение.

Хорошо известны другие природные неорганические полимерные материалы на основе силикатов - асбест, слюда, тальк. Разработаны технологии синтеза этих полимеров, причем технические характеристики искусственных материалов выше, чем природных.

Важнейшую группу неорганических гетероцепных полимерных материалов составляют керамики различного состава.

Что же позволяет считать эти материалы полимерными? Прежде всего, наличие высокой анизотропии макромолекулы и соединение атомов между собой прочными ковалентными связями. Наряду с этим для безуглеродных полимеров так же, как и для органических полимеров, неизвестно газообразное состояние. Так же как и органические высокомолекулярные соединения, безуглеродные полимеры делятся на термопласты (например, силикатные стекла) и реактопла- сты (например, оксидная керамика).

Растворы и расплавы неорганических полимеров по сравнению с растворами низкомолекулярных веществ имеют повышенную вязкость, которая возрастает с увеличением молекулярной массы. Сетчатые неорганические полимеры так же, как и сетчатые органические полимеры, не способны к растворению.

Неорганические полимерные материалы линейного строения способны находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. На рис. 17.1 показаны термомеханические кривые органических и неорганических полимеров. Кривые построены путем измерения при различных температурах угла кручения ф круглого стержня из исследуемого материала.

Из приведенных данных видно, что неорганические стекла, так же как и органические полимеры, имеют два температурных перехо-

Рис. 17.1. Термомеханические кривые органических и неорганических полимеров: 1 - оргстекла; 2- эбонита; 3, 4, 5 - силикатных стекол (свинцового, щелочного и малощелочного соответственно)

да, при которых их свойства (в данном случае угол закручивания стержня) резко изменяются, что связано с их переходами из стеклообразного в высокоэластическое и из высокоэластического в вязкотекучее состояние.

Многие неорганические полимеры имеют сетчатое строение и, как органические реактопласты, не могут проявить высокоэластич- ность. Для сетчатых неорганических полимеров, как и для органических, имеющих трехмерную сетку, понятие «макромолекула» теряет смысл, поскольку все их атомы соединены в единую сетчатую структуру, образующую гигантскую сверхмакромолекулу.

Технология получения неорганических высокомолекулярных соединений, так же как и органических, основана на полимеризации и поликонденсации. Синтез неорганических полимеров сетчатого строения и формование из них изделий происходят одновременно, так же как и при изготовлении изделий из реактопластов.

Пластификация неорганических полимеров производится низкомолекулярными веществами и позволяет снизить температуру стеклования, аналогично тому, как это происходит при пластификации органических полимеров органическими пластификаторами. В качестве пластификаторов неорганических полимеров используют воду, спирты, аммиак, газы - азот и кислород, позволяющие снизить уровень межмолекулярного взаимодействия и увеличить интервал между температурами стеклования и текучести.

Неорганические полимеры склонны к образованию надмолекулярных структур. Различными методами установлено, что в структуре стекол имеются микронеоднородности, обладающие строгой упорядоченностью. Один структурно-упорядоченный элемент в стекле приходится на объем 1(Г 28 см 3 . Размеры таких элементов, как правило, чрезвычайно малы (от 1 до 300 нм), поэтому существенного влияния на свойства стекол они не оказывают. В некоторых материалах с помощью зародышей кристаллизации специально создается двухфазная аморфно-кристаллическая структура, которая позволяет получать материалы с заданными свойствами.

На рис. 17.2 приведены фотографии микроструктуры неорганических полимеров на основе оксидов металлов, на которых отчетливо видны надмолекулярные образования, свидетельствующие о структурной упорядоченности этих материалов.

Рис. 17.2. Надмолекулярные структуры неорганических полимеров (х10 000): а - топливной таблетки U0 2 ; б - шпинели MgAl 2 0 4

Макромолекулы безуглеродных линейных полиэлементооксанов, так же как и органических полимеров, обладают гибкостью. Распространенное мнение об отсутствии гибкости у макромолекул неорганических полимеров основано на том, что большинство безуглеродных природных полимеров (силикатов) имеют трехмерную структуру, жестко ограничивающую сегментальную подвижность макромолекул.

Физические и химические свойства неорганических полимеров принципиально отличаются от свойств органических и элементоорганических полимеров, что является следствием различий в структуре главной цепи. Они обладают высокой прочностью и твердостью, тугоплавкостью и жаростойкостью, износостойкостью и отличными диэлектрическими свойствами, химически и биологически инертны.

Благодаря этим свойствам неорганические полимеры находят широкое применение в качестве огнеупорных, жаропрочных и сверхпрочных конструкционных материалов. Из них делают катализаторы и адсорбенты, клеи и герметики с высокой теплостойкостью, эти материалы применяются при изготовлении лазерного и электронного оборудования. Широко используются неорганические полимеры в качестве строительных материалов, а также в ортопедии и стоматологии. И это только начало.

Таблица 17.1. Прогноз развития исследований и разработок в области керамических материалов и стекла

Новые технологии и открытия

Области промышленности

Социальный или технический эффект

Научные принципы конвергенции неорганических, органических и биологических материалов

Производство энергетических установок; утилизация отходов; производство сельскохозяйственной продукции; создание био- функциональных и «интеллектуальных» материалов

Повышение безопасности энергетических установок (в том числе атомных); увеличение продолжительности здоровой жизни; создание новых технологий сельскохозяйственного производства, экологически здоровой среды обитания человека

Научные принципы стандарта рО для расплавов оксидных систем (по аналогии с pH для водных растворов); мониторинг оксидных расплавов

Принципиально новые технологии производства цемента, стекла, металлов

Сокращение энергозатрат на единицу продукции, снижение стоимости строительных материалов; разработка новых типов стекол и ситаллов; изменение условий жизни человека

Физико-химические процессы в системах с наноразмерами; теоретические представления, учитывающие размер как физико-химический фактор, и представления о «пятом» состоянии вещества

Новые технологии производства материалов; новые машины и оборудование; многофункциональные микропроцессоры

Промышленное производство дешевых и долговечных бытовых предметов; развитие городской инфраструктуры

Принципы структурно-энергетического моделирования строения и свойств материалов; программы компьютерного моделирования большинства конструкционных материалов, изделий и конструкций

Дизайн и конструирование новых машин и механизмов

Резкое изменение условий и содержания труда материаловедов и конструкторов, сокращение числа работающих в неблагоприятных условиях; автоматизированное производство материалов и механизмов

В табл. 17.1 приведены прогнозы развития исследований в области неорганических полимерных материалов, которые показывают, что это направление материаловедческой науки должно привести к революционным изменениям в области создания новой техники.

Дальнейшее развитие использования этих материалов связано с необходимостью снижения их стоимости и расширения объемов производства.

Контрольные вопросы

  • 1. Какие химические элементы могут образовывать неорганические полимерные материалы?
  • 2. Какими связями соединены атомы в неорганических полимерных материалах?
  • 3. Приведите примеры неорганических конструкционных материалов.
  • 4. Какими важнейшими свойствами, присущими высокомолекулярным соединениям, обладают неорганические полимеры?
  • 5. Какие физические состояния известны для неорганических полимеров?
  • 6. Как можно классифицировать неорганические полимеры по отношению к нагреванию?
  • 7. Можно ли пластифицировать неорганические полимеры?
  • 8. Применимо ли понятие о надмолекулярной структуре к неорганическим полимерам?
  • 9. Каковы отличительные свойства неорганических конструкционных материалов?

Неорганические полимеры - высокомолекулярные соедине­ния, которые состоят полностью из неорганических атомных звеньев.

Особенностью неорганических полимеров является то, что они образуются в неживой природе. Они также распростране­ны в минеральном мире, как и органические полимеры в жи­вой природе. Неорганические полимеры образуют окислы кремния, алюминия и других многовалентных элементов, кото­рые имеют на земле наибольшее распространение. Более 50% всей массы земного шара состоит из кремниевого ангидрида, а в наружной части земной коры (гранитный слой) его содержа­ние достигает 60%, причем большая часть кремния находится в виде полимеров чистого кремниевого ангидрида и сложных си­ликатов.

Многие ювелирные камни также являются полимерами. Так, горный хрусталь и аметист - почти чистый полимерный кремниевый ангидрид; рубин, сапфир, корунд - полимер окн-си алюминия. Алмаз, графит - это полимеры углерода.

Кварц - важнейшая составная часть горных пород и пес­ка - представляет собой модификацию кремниевого ангидрида. Следовательно, стеклянные изделия, получаемые путем плавле­ния песка, состоят из полимеров кремниевого ангидрида.

Глина состоит из высокомолекулярных алюмосиликатов пе­ременного состава, поэтому получаемые из нее керамические изделия также содержат неорганические полимеры.

Неорганические полимеры в зависимости от происхождения подразделяются на природные, искусственные и синтетиче­ские.

Природные полимеры образуются в природе и относятся чаще к сырьевым ресурсам. Товарами они становятся лишь после их добычи и технологической обработки, чаще механической, пу­тем шлифовки, огранки и других операций. Примером могут служить алмазы, рубины, сапфиры и другие драгоценные и по­делочные камни. Наиболее распространенными природными полимерами являются полисилоксаны, полиалюматы и полиуг-лсроды. К последним относится алмаз, графит, каменный и бу­рый уголь, карбин (минерал чароит). В чистом виде эти поли­меры встречаются редко, чаще с примесями других минераль­ных и органических веществ.

Искусственные полимеры образуются из природного поли­мерного сырья путем переплавки и других операций технологи­ческого производства. Примером таких полимеров могут слу­жить стекло, керамика и изделия из них (стеклянная, керами­ческая посуда и др.).

Синтетические полимеры - высокомолекулярные соедине­ния, создаваемые синтетическим путем. К ним можно отнести синтетические поделочные камни: корунды, фианиты, рубины и т. п. По многим потребительским свойствам (цвету, блеску и т. п.) эти полимеры не уступают природным. Однако есть и отличия. Например, бриллианты превосходят фианиты по про­зрачности, особенно заметной при большом увеличении.


Газы

Газы - составная часть многих товаров с пористой структу­рой, клеточным строением или специально насыщаемых (на­полняемых) газами. В количественном соотношении газы зани-

§ 3. Сухие неорганические вещества

мают небольшой удельный вес в товарах, однако для некоторых из них они имеют существенное значение для качества.

Наиболее распространенными являются газы атмосферного воздуха (Н 2 , Ы 2 , О 2 , СО 2) в том же или измененном (модифици­рованном) соотношении, что и нормальный газовый состав (21% О 2 , 78% Ы 2 , 0,03% СО 2 и инертные газы). Именно такой состав характерен для большинства товаров с пористой струк­турой. У «живых» товаров газы находятся в межклеточном про­странстве, при этом газовый состав изменяется за счет дыха­ния, интенсивности вывода СО 2 и поступления в ткани О а, а также газов из окружающей среды. Сохраняемость таких това­ров зависит от газового состава внутренней и внешней среды. При неблагоприятном газовом составе (например, отсутствии О 2 или избытке СО 2) могут возникать значительные дефекты, приводящие к гибели, а затем и порче живых организмов това­ров.

Газы поступают в товары из атмосферного воздуха через по­ры, микрокапилляры и другие отверстия на поверхности (на­пример, у плодов и овощей есть устьица, чечевички). Кроме то­го, газы могут образовываться биологическим или химическим путем в процессе производства или хранения. Например, при производстве хлебобулочных и мучных кондитерских изделий, спирта, вин, квашеных овощей, сыров за счет спиртового и/или молочнокислого брожения выделяется углекислый газ, который формирует пористую структуру готовой продукции или создает игристый эффект (у игристых вин).

При производстве некоторых товаров их искусственно на­сыщают газами. Так, в шипучие вина и газированные напитки вводят углекислый газ (диоксид углерода), массовая доля кото­рого служит одним из идентифицирующих признаков ассорти­ментной принадлежности вида и разновидности товара (силь­но- и слабогазированные напитки). Повышенное содержание СО 2 улучшает также сохраняемость газированных, шипучих и игристых напитков, придает кислый вкус.

Многие товары пенистой структуры производят путем сби­вания и насыщения массы воздухом. К таким товарам относит­ся пастила, суфле, косметические пенки и т. п. Пористая структура хлебобулочных изделий формируется за счет газов, образующихся при брожении.

К числу неорганических газов относят и аммиак, который является одним из продуктов распада белков и аминокислот.

Наряду с указанными газами, при производстве и хранении могут образовываться или вводиться и другие газы. Так, воз­душные шарики заполняют водородом перед продажей. При брожении капусты выделяется сероводород и меркаптан - се-росодержащие газы, придающие продукции неприятный запах, поэтому их необходимо удалять. При микробиологической пор­че некоторых пищевых продуктов выделяются газы с гнилост­ным запахом.

Газы, попадающие к массу продукции, могут вызывать обра­зование внутренних пустот (раковин, полостей и т. п.), что снижает качество товаров. Такие дефекты иногда встречаются у металлических, керамических, стеклянных изделий, а также в хлебе, сырах, колбасах и других изделиях.

Таким образом, содержащиеся в товарах газы, несмотря на низкое их содержание, могут влиять на формирование и изме™ нение товароведных характеристик товаров.

Органические вещества товаров - это соединения, в состаЩ) которых входят атомы углерода и водорода. Они подразделяют*! ся на мономеры, олигомеры и полимеры.

Мономеры

Мономеры - органические вещества, состоящие из одного соединения и не подвергающиеся расщеплению с образовани­ем новых органических веществ. Распад мономеров происходит в основном до углекислого газа и воды.

Перечень основных веществ, относящихся к мономерам, представлен на рис. 25. Большинство из этих веществ характер­ны в основном для пищевых продуктов. В непродовольственных товарах мономеры встречаются в парфюмерно-косметической продукции (спирты, глицерин, жирные органические кислоты), изделиях бытовой химии (спирты и другие органические раство­рители), нефтепродуктах (углеводороды).

Моносахариды - мономеры, относящиеся к классу углево­дов, в состав молекулы которых входят углерод, водород и ки­слород (СН 2 О) П. Наибольшее распространение из них имеют гексозы (С 6 Н| 2 О 6) - глюкоза и фруктоза. Они встречаются в ос­новном в пищевых продуктах растительного происхождения

§ 4. Сухие органические вещества

(плодах и овощах, вкусовых напитках и кондитерских издели­ях). Промышленностью выпускается также чистая глюкоза и фруктоза как продукт питания и сырье для производства кон­дитерских изделий и напитков для диабетиков. Из натуральных продуктов больше всего глюкозы и фруктозы (до 60%) содер­жит мед.

Моносахариды придают продуктам сладкий вкус, обладают энергетической ценностью (1 г - 4 ккал) и влияют на гигро­скопичность содержащих их продуктов. Растворы глюкозы и фруктозы хорошо сбраживаются дрожжами и используются другими микроорганизмами, поэтому при содержании до 20% и повышенном содержании воды ухудшают сохраняемость.

Органические кислоты - соединения, в составе молекулы которых находится одна или несколько карбоксильных групп (-СООН).

В зависимости от числа карбоксильных групп органические кислоты подразделяются на моно-, ди- и трикарбоновые ки­слоты. Другими классификационными признаками этих кислот служит Число атомов углерода (от С 3 до С 4 о), а также амино- и фенольных групп. Классификация органических кислот пред­ставлена на рис. 26.

Монокарбоновые кислоты - соединения, содержащие одну карбоксильную группу; представлены уксусной, молочной, масляной, пропионовой и другими кислотами. Дикарбоновые кислоты ~ соединения с двумя карбоксильными группами; включают яблочную, щавелевую, винную и янтарную кислоты. Трикарбоновые кислоты - соединения е тремя карбоксильными группами, к ним относятся лимонная, щавелево-янтарная и другие кислоты. Моно-, ди- и трикарбоновые кислоты относят­ся, как правило, к низкомолекулярным.

Природные органические кислоты содержатся в свежих пло­дах и овощах, продуктах их переработки, вкусовых товарах, а также в кисломолочных продуктах, сырах, кисломолочном сли­вочном масле.

Органические кислоты - соединения, придающие продук­там кислый вкус. Поэтому они используются в виде пищевых добавок в качестве подкислителей (уксусная, лимонная, молоч­ная и другие кислоты) для сахаристых кондитерских изделий, алкогольных и безалкогольных напитков, соусов, а также неко­торых косметических товаров (кремов и т. п.).

Наибольшее распространение в пищевых продуктах имеют молочная, уксусная, лимонная, яблочная и винная кислоты, а в непродовольственных товарах - лимонная кислота. Отдельные виды кислот (лимонная, бензойная, сорбиновая) обладают бак­терицидными свойствами, поэтому их используют в качестве консервантов. Органические кислоты пищевых продуктов от­носятся к дополнительным энергетическим веществам, так как при их биологическом окислении выделяется энергия.

Жирные кислоты - карбоновые кислоты алифатического ряда с не менее шести атомов углерода в молекуле (С 6 -С 22 и выше). Они подразделяются на высшие (ВЖК) и низкомолеку­лярные (НЖК).

Жирные кислоты могут быть природными и синтетически­ми. Природные жирные кислоты - преимущественно одноос­новные кислоты с четным числом атомов углерода. Наиболее распространены природные высшие жирные кислоты с 12- 18 атомами углерода в молекуле. Жирные кислоты с числом атомов водорода от С 6 до С, 0 называют низкомолекулярными.

§ 4. Сухие органические вещества

ВЖК могут быть насыщенными и ненасыщенными (с двой­ными, реже тройными связями). Последние обладают высокой химической активностью: могут окисляться по месту разрыва двойных связей, присоединять галогены (йод, хлор и др.), водо­род (гидрогенизация), кислород.

Свободные ВЖК встречаются в природе редко, в основном как продукты неполного синтеза жиров в незрелых семенах масличных растений или гидролиза жиров при их хранении.

Важнейшие природные насыщенные ВЖК - стеариновая и пальмитиновая, а ненасыщенные - олеиновая, арахидоновая, линолевая и линоленовая. Из них последние две относятся к полиненасыщенным незаменимым жирным кислотам, обуслов­ливающим биологическую эффективность пищевых продуктов. Природные ВЖК могут содержаться в виде жиров во всех жи-росодержащих продуктах, однако в свободном виде они встре­чаются в небольшом количестве, так же как и НЖК.

Синтетические жирные кислоты (СЖК) - это смесь моно-карбоновых кислот с четным и нечетным числом атомов угле­рода. Их получают в промышленности из нефтехимического сырья (например, окисление парафина при высоких температу­рах и атмосферном давлении). СЖК применяют в производстве пластичных смазок, синтетических спиртов, лакокрасочных ма­териалов для улучшения смачиваемости и дисперчирования пигментов, предотвращения их оседания, изменения вязкости красок. Кроме того, СЖК используются при производстве ла-тексов и каучука в качестве эмульгатора при полимеризации бутадионсодержащих мономеров и искусственной кожи, а так­же в свечном производстве.

Синтетические ВЖК отличаются от природных большим диапазоном числа атомов углерода - от С 6 до С 25 , в то время как в природных ВЖК этот диапазон значительно меньше (С ]2 -С 18 , главным образом С 16 и С 18).

ВЖК в свободном виде - умеренно токсичные вещества, они оказывают раздражающее действие на неповрежденную ко­жу и слизистые оболочки. Поэтому их содержание в пищевых продуктах ограничивается определенным, максимально допус­тимым уровнем показателя «кислотное число».

Аминокислоты ~ карбоновые кислоты, содержащие одну или несколько аминогрупп (МН 2). В зависимости от природы кислотной фракции они подразделяются на моноаминомонокар-боновые (например, глицин, валин, лейцин и др.), диаминомонокарбоновые (лизин, аргинин), гидрооксиаминокислоты (серии, треонин, тирозин), тиоаминокислоты (серосодержащие - цис-* тин, цистеин, метионин) и гетероциклические (гистидин, трип-**: тофан, пролин).

Аминокислоты в товарах могут находиться в свободном виде;, и в составе белков. Всего известно около 100 аминокислот, из. них почти 80 встречаются только в свободном виде. Плотами-* новая кислота и ее натриевая соль широко применяются в ка^ честве пищевой добавки в составе приправ, соусов, пищевых " концентратов на мясной и рыбной основах, так как усиливают; вкус мяса и рыбы. Ароматические аминокислоты используют; при производстве красителей. г Фенолкарбоновые (фенольные) кислоты - карбоновые кисло-;, ты, содержащие бензольное кольцо. Они могут встречаться в! свободном виде, а также входить в состав полифенолов. К фе-!, нольным относятся галловая, кофейная, ванилиновая, салици- т ловая, оксибензойная и коричные кислоты. Эти кислоты обла­дают бактерицидными свойствами, улучшают сохраняемость? товаров и повышают иммунные свойства организма человека. < Они содержатся в основном в свежих плодах и овощах, а также.* в продуктах их переработки и винах. I Амины и амиды - производные аммиака (МН 3). Амины - вещества, в молекуле которых один или несколько атомов во-; дорода замещены углеводородными радикалами (К). По числу- 1 , аминогрупп различают моно-, ди-, три- и полиамины. Назва-*; 1 , ния аминов образуют из названий органических остатков моле- 1 ^ кул, связанных с атомом азота. Например, метиламин, диметил-Ц амин, триметиламин образуются при гидролизе белков рыбы и мяса и служат признаком утраты свежести этих продуктов. а Амины придают продуктам неприятные запахи: аммиачный,*! гнилостный (запах гнилой рыбы).

Амины легко вступают в различные химические реакции с неорганическими и органическими кислотами, ангидридами карбоновых кислот, сложными эфирами с образованием раз­личных веществ: нитрозаминов (с азотной кислотой и нитрита­ми) красителей, полиамидов (при поликонденсации аминов и их производных), амидов.

Амины - промежуточные продукты при производстве кра­сителей, пестицидов, полимеров (в том числе полиамидов и по-лиуретанов), адсорбентов, ингибиторов коррозии, антиокси-дантов.

§ 4. Сухие органические вещества

Амиды - ацилпроизводные аммиака или аминов. Природ­ные амиды входят в состав пищевых продуктов (в основном в виде амидов аспарагиновой и глютаминовой кислот: аспараги-на и глютамина), а также непродовольственных товаров, при производстве которых используются синтетические амиды (на­пример, пластификаторы бумаги, искусственной кожи, сырье для полимеров, красителей и т. п.).

Свойства. Амины в повышенных дозах оказывают вредное воздействие на организм человека: поражают нервную систему, нарушают проницаемость стенок кровеносных сосудов и кле­точных мембран, вызывают нарушение функций печени и раз­витие дистрофии. Некоторые ароматические амины - канце­рогены, вызывающие у человека рак мочевого пузыря.

Аспарагин в организме человека оказывает положительное действие: связывает аммиак, переносит его к почкам, что спо­собствует обезвреживанию и выведению из организма этого сильного яда, образующегося при глубоком распаде белков и дезаминировании аминокислот.

Витамины - низкомолекулярные органические соединения, являющиеся регуляторами или участниками процессов обмена веществ в организме человека.

Витамины могут самостоятельно участвовать в обмене ве­ществ (например, витамины С, Р, А и т. п.) или входить в со­став ферментов, катализирующих биохимические процессы (витамины В ь В 2 , В 3 , В 6 и др.).

Кроме указанных общих свойств, каждый витамин имеет специфические функции и свойства. Эти свойства рассматри­ваются в товароведении продовольственных товаров.

В зависимости от растворимости витамины подразделяют­ся на:

водорастворимые (В, В 2 , В 3 , РР, В 6 , В 9 , В, 2 , В 15 , С и Р

жирорастворимые (А, Д, Е, К).

К группе витаминов относят также витаминоподобные веще­ства, часть из которых называют витаминами (каротин, холин, витамин и, тартароновая кислота и др.).

Спирты - органические соединения, содержащие в молеку­лах одну или несколько гидроксильных групп (ОН) у насыщен­ных атомов углерода (С).

По количеству этих групп различают одно-, двух- (гликоли), трех- (глицерин) и многоатомные спирты.

Одноатомные спирты, содержащие одну гид роке ильную группу в зависимости от числа атомов С, подразделяются на низшие (С,-С 5) и высшие жирные (С 6 -С 2П) спирты. К н и з-шим спиртам относятся метанол (СН 5 ОН), этанол (С 2 Н 5 ОН), пропанол (С 3 Н 7 ОН) и др., а к высшим - гексиловый (С 6 Н П ОН), гептиловый (С 7 Н| 5 ОН), октиловый (С 8 Н, 7 ОН), но-ниловый (С 9 Н, 9 ОН) и другие спирты.

Эти спирты могут быть природными и синтетиче­скими. Природные спирты встречаются в растительных орга­низмах в небольшом количестве п свободном и связанном виде (сложные эфиры). Этиловый спирт получают в качестве гото­вой продукции в спиртовой промышленности, а также в вино­делии, ликеро-водочной, пивоваренной промышленности, при производстве вин, водок, коньяка, рома, виски, пива. В качест­ве нежелательных примесей образуются метиловый, бутиловый и высшие спирты, снижающие качество и безопасность готовой продукции. Кроме того, этиловый спирт в небольших количе­ствах образуется при производстве кефира, кумыса и кваса. Высшие жирные спирты в пищевых продуктах не встречаются в свободном виде, а присутствуют в виде эфира в восках.

Спирты, особенно этиловый, входят в состав и ряда непро­довольственных товаров: парфюмерно-косметических, бытовой химии в качестве растворителей ароматических и красящих ве­ществ, жирных кислот и жиров. Спирты применяют как сырье для синтеза различных органических соединений (формальде­гида, ацетона, диэтилового эфира, сложных эфиров карбоно-вых кислот), а также в производстве красителей, синтетических волокон, душистых веществ, моющих средств и т. п. Метило­вый спирт используется в качестве моторного топлива.

Набольшее значение в товарах имеют следующие спирты: этиловый, амиловый, бутиловый, бензиловый, метиловый, про-пидовый, высшие жирные спирты, этилснгликоль.

Свойства. Спирты - жидкости или твердые вещества, хоро­шо растворимые во многих органических растворителях. Низ­шие спирты хорошо растворяются в воде, а высшие - плохо.

§ 4. Сухие органические вещества

Многие одноатомные спирты - токсичные вещества. Их токсичность зависит от дозы. Один из наиболее токсичных спиртов - метанол, смертельная доза которого 100-150 мл. Смертельная доза этанола значительно выше - 9 г на 1 кг мас­сы тела. Высшие жирные спирты С 6 -С 10 раздражают слизистые оболочки, слабо - кожу, поражают зрение и паренхимныс тка­ни. Предельно допустимый уровень для них - 10 мг/м 3 . Спир­ты С,-С 2П - практически не токсичны.

Двухатомные (гликоли) и многоатомные спирты практически не токсичны, за исключением этиленгликоля, образующего в организме ядовитую щавелевую кислоту.

Особое место среди спиртов занимает глицерин как один из компонентов жиров. Поэтому этот спирт мы рассмотрим более подробно.

Глицерин (от греч. ё1укего$ - сладкий) - трехатомный спирт, представляющий собой бесцветную вязкую жидкость сладкого вкуса без запаха. Он смешивается в любых соотношениях с во­дой, этанолом, метанолом, ацетоном, но нерастворим в хлоро­форме и эфире, обладает высокой гигроскопичностью. Глице-риново-водные растворы замерзают при низких температурах (например, водная смесь с 66,7% глицерина замерзает при тем­пературе -46,5 °С).

В природе глицерин встречается только в виде эфиров с высшими жирными кислотами - жиров, из которых его и по­лучают путем омыления. Глицерин входит в состав ряда пар­фюмерно-косметических изделий, ликеров, сахаристых конди­терских изделий. Кроме того, он используется в качестве мяг-чителя для тканей, кожи, бумаги, смазок, кремов для обуви, мыла.

Углеводороды - органические соединения, состоящие только из атомов углерода и водорода. Различают алифатические и ациклические углеводороды. Алифатические углеводороды харак­теризуются наличием линейных или разветвленных цепей (ме­тан, этан, ацетилен, изопрен). В отличие от них ациклические углеводороды имеют молекулы, состоящие из циклов (колец) трех и более атомов углерода (например, фенол, бензол).

В зависимости от химической природы различают насыщен­ные (с простыми связями) и ненасыщенные (двойные, тройные связи), а по консистенции - газообразные, жидкие и твердые углеводороды. К газообразным веществам относятся низшие углеводороды (С,-С 4): метан, этан, пропан, бутан и изобутан, причем метан и пропан используются как бытовой газ, топливо и сырье для перерабатывающей промышленности. Эти газы не имеют цвета и запаха.

Жидкие углеводороды представлены веществами, имеющи­ми количество атомов углерода от С 5 до С 17 . Это бесцветные жидкости с характерным «бензиновым» запахом. К ним отно­сятся пентан, изопентан, гексан, гептан, октан, нонант и др.

Твердые углеводороды - это бесцветные вещества, относя­щиеся к высшим насыщенным углеводородам с С 18 и более (на­пример, эйкозан, гектан и др.)- Смесь твердых насыщенных уг­леводородов (С 18 -С 35) представляет собой парафин, а смесь различных газообразных, жидких и твердых углеводородов, по­лучаемых из нефти, - нефтепродукты.

Насыщенные углеводороды входят в состав бытового газа, моторного топлива. Жидкие углеводороды применяют в качест­ве растворителей, твердые (парафин, перезин) - при производ­стве пластмасс, каучуков, синтетических волокон, моющих средств. Парафин используется при производстве свечей, спи­чек, карандашей, для защитных покрытий тары (например, дошников для квашения капусты), упаковочных материалов (вощеная бумага), апперетирования тканей, а также для произ­водства синтетических жирных кислот.

Ненасыщенные углеводороды широко применяют в химиче­ской промышленности для получения синтетических полиме­ров: полиэтилена, полипропилена, различных каучуков, уксус­ной кислоты.

В природе ненасыщенные углеводороды встречаются редко из-за их высокой реакционной способности. Так, этилен обра­зуется при созревании плодов и овощей, ускоряя этот процесс на материнском растении и при хранении. Терпены - высшие ненасыщенные углеводороды входят в состав эфирных масел свежих плодов и овощей. Красящие вещества оранжевого и ро­зового цвета - каротин, ликопин, содержащиеся во многих плодах и овощах (абрикосы, персики, облепиха, морковь, тык­ва, томаты, арбузы и др.), относятся к ненасыщенным углево­дородам. Терпены содержатся также в скипидаре и печени акул (сквален).

Завершая рассмотрение мономеров, следует отметить, что за редким исключением они содержатся в продовольственных и непродовольственных товарах растительного и животного про-

§ 4. Сухие органические вещества

исхождения в небольшом количестве. Это объясняется тем, что растения и животные стремятся строить свои ткани за счет по­лимеров, а запасать резервные вещества в виде олигомеров и полимеров. В неживой природе мономеры чаще накапливаются в углеводородной форме.

Олигомеры

Олигомеры - органические вещества, состоящие из 2-10 ос­татков молекул однородных и разнородных веществ.

В зависимости от состава олигомеры подразделяются на од-нокомпонентные, двух-, трех- и многокомпонентные. К одно-компонентным олигомерам относятся некоторые олигосахари-ды (мальтоза, трегалоза), к двухкомпонентным - сахароза, лак­тоза, жиры-моноглицериды, в состав которых входят остатки молекул глицерина и только одной жирной кислоты, а также гликозиды, сложные эфиры; к трехкомпонентным - рафиноза, жиры-диглицериды; к многокомпонентным - жирььтриглице-риды, липоиды: фосфатиды, воска и стероиды.

Олигосахариды - углеводы, в состав которых входят 2-10 ос­татков молекул моносахаридов, связанных гликозидными связя­ми. Различают ди-, три- и тетрасахариды. Наибольшее распро­странение в пищевых продуктах имеют дисахариды - сахароза и лактоза, в меньшей мере - мальтоза и трегалоза, а также триса-хариды - рафиноза. Указанные олигосахариды содержатся только в пищевых продуктах.

Сахароза (свекловичный, или тростниковый, сахар) - диса-харид, состоящий из остатков молекул глюкозы и фруктозы. При кислотном или ферментативном гидролизе сахароза распа­дается на глюкозу и фруктозу, смесь которых в соотношении 1: 1 раньше называли инвертным сахаром. В результате гидро­лиза усиливается сладкий вкус продуктов (например, при со­зревании плодов и овощей), поскольку фруктоза и инвертный сахар обладают повышенной степенью сладости, чем сахароза. Так, если степень сладости сахарозы принять за 100 условных единиц, степень сладости фруктозы будет равна 220, а инверт-

ного сахара - 130.

Сахароза является преобладающим сахаром следующих пи­щевых продуктов: сахара-песка, сахара-рафинада (99,7-99,9%), сахаристых кондитерских изделий (50-96), некоторых плодов и овощей (бананы - до 18%, дыни - до 12, лук - до 10-12%),сладких и десертных ароматизированных вин, ликеров, нали­вок и т. д. Кроме того, сахароза может содержаться в неболь­ших количествах и в других пищевых продуктах растительного происхождения (зерномучных товарах, во многих алкогольных и безалкогольных напитках, слабоалкогольных коктейлях, муч­ных кондитерских изделиях), а также сладких молочных това­рах - мороженом, йогуртах и т. п. Сахароза отсутствует в пи­щевых продуктах животного происхождения, табачных издели­ях и непродовольственных товарах.

Лактоза (молочный сахар) - дисахарид, состоящий из остат­ков молекул глюкозы и галактозы. При кислотном или фермен­тативном гидролизе лактоза распадается до глюкозы и галакто­зы, которые и используются живыми организмами: человека, дрожжей или молочнокислых бактерий.

Лактоза по степени сладости значительно уступает сахарозе и глюкозе, которая входит в ее состав. Уступает она им и по рас­пространенности, так как содержится в основном в молоке раз­ных видов животных (3,1-7,0%) и отдельных продуктах его пе­реработки. Однако при использовании молочнокислого и/или спиртового брожений в процессе производства (например, ки­сломолочных продуктов) и/или сычужного фермента (при про­изводстве сыров) лактоза полностью сбраживастся.

Мальтоза (солодовый сахар) - дисахарид, состоящий из двух остатков молекул глюкозы. Это вещество встречается как про­дукт неполного гидролиза крахмала в солоде, пиве, хлебе и мучных кондитерских изделиях, приготовленных с использова­нием проросшего зерна. Она содержится только в небольших количествах.

Трегалоза (грибной сахар) - дисахарид, состоящий из двух остатков молекул глюкозы. Этот сахар мало распространен в природе и содержится в основном в пищевых продуктах одной группы - свежих и сушеных грибах, а также в натуральных консервах из них и дрожжах. В квашеных (соленых) грибах тре-галоза отсутствует, поскольку расходуется при брожении.

Рафиноза - трисахарид, состоящий из остатков глюкозы, фруктозы и галактозы. Как и трегалоза, рафиноза мало распространенное вещество, встречающееся в небольших количествах в зерномучных товарах и свекле.

Свойства. Все олигосахариды являются запасными пита­тельными веществами растительных организмов. Они хорошо растворимы в воде, легко подвергаются гидролизу до моносаха-

§ 4. Сухие органические вещества

ридов, обладают сладким вкусом, но степень их сладости раз­лична. Исключение составляет лишь рафиноза - несладкая на

Олигосахариды гигроскопичны, при высоких температурах (160-200 °С) происходит их карамелизация с образованием темноокрашенных веществ (карамелинов и др.). В насыщенных растворах олигосахариды могут образовывать кристаллы, кото­рые в ряде случаев ухудшают консистенцию и внешний вид продуктов, вызывая образование дефектов (например, засаха­ривание меда или варенья; образование кристаллов лактозы в сгущенном молоке с сахаром, сахарное поседение шоколада).

Липиды и липоиды - олигомеры, в состав которых входят ос­татки молекул трехатомного спирта глицерина или других вы­сокомолекулярных спиртов, жирных кислот, а иногда и других

Липиды - это олигомеры, являющиеся сложными эфирами глицерина и жирных кислот - глицеридами. Смесь природных липидов, в основном триглицеридов, принято называть жира­ми. В товарах содержатся именно жиры.

В зависимости от количества остатков молекул жирных ки­слот в глицсридах различают моно-, ди- и три&шцериды, а в за­висимости от преобладания предельных или непредельных ки­слот жиры бывают жидкие и твердые. Жидкие жиры бывают чаще всего растительного происхождения (например, расти­тельные масла: подсолнечное, оливковое, соевое и т. п.), хотя есть и твердые растительные жиры (какао-масло, кокосовое, пальмоядровое). Твердые жиры - это в основном жиры живот­ного или искусственного происхождения (говяжий, бараний жир; коровье масло, маргарин, кулинарные жиры). Однако среди животных жиров есть и жидкие (рыбий, китовый, ко­пытный и т. п.)-

Жиры содержатся во всех пищевых продуктах, кроме от­дельных их групп, указанных далее в классификации как шес­тая группа. В непродовольственных товарах жиры содержатся в ограниченном количестве групп: в косметических изделиях (кремах, лосьонах) и в строительных товарах (олифе, масляных красках, замазке, смазочных маслах и т. п.), В небольшом ко­личестве жир находится в меховых и кожаных изделиях, изго­товленных из натуральных материалов животного происхожде­ния, так как в состав оболочек и органелл животной клетки обязательно входят липоиды и липиды.

В зависимости от количественного содержания жиров в потребительские товары можно подразделить на следующие*! группы. -,

1. Товары с супервысоким содержанием жиров (97,0-99,9%)." К ним относятся растительные масла, животные и кулинарные жиры, коровье топленое масло, олифа, технические масла.

2. Товары с преимущественным содержанием жиров (60- 82,5%) представлены сливочным маслом, маргарином, шпиком свинины, орехами: грецкими, кедровыми, фундуком, минда* лем, кешью и т. п.; масляными красками.

3. Товары с высоким содержанием жиров (25-59%). В эту группу входят концентрированные молочные продукты: сыры, мороженое, молочные консервы, сметана, творог, сливки с по­вышенной жирностью, майонез; жирные и средней жирности мясо, рыба и продукты их переработки, икра рыб; яйцо; не­обезжиренная соя и продукты ее переработки; торты, пирож­ные, сдобное печенье, орехи, арахис, шоколадные изделия, хал­ва, кремы на жировой основе и др.

4. Товары с низким содержанием жиров (1,5-9,0%) - бобо­вые крупы, закусочные и обеденные консервы, молоко, сливки, кроме высокожирных, кисломолочные напитки, отдельные ви­ды нежирной рыбы (например, семейства тресковых) или мяса II категории упитанности и субпродуктов (кости, головы, нож­ки и т. п.).

5. Товары с очень низким содержанием жиров (0,1 - 1,0%) - большинство зерномучных и плодоовощных товаров, кроме сои, орехов, обеденных и закусочных консервов; мучных кон­дитерских изделий, вошедших в третью группу; меховые и ко­жаные изделия.

6. Товары, не содержащие жиров (0%) - большинство непро­довольственных товаров, кроме вошедших в другие группы, вспомогательные пищевые продукты, вкусовые напитки, са­харистые кондитерские изделия, кроме карамели и конфет с молочными и ореховыми начинками, ириса; сахар; мед; алко­гольные, слабоалкогольные и безалкогольные напитки, кроме эмульсионных ликеров на молочной и яичной основах; табач­ные изделия.

Общие свойства. Жиры являются запасными питательными веществами, обладают самой высокой энергетической ценно­стью среди других питательных веществ (I г - 9 ккал), а также биологической эффективностью, если содержат лолиненасы-

§ 4. Сухие органические вещества

шенные незаменимые жирные кислоты. Жиры имеют относи­тельную плотность меньше 1, поэтому легче воды. Они нерас­творимы в воде, но растворимы в органических растворителях (бензине, хлороформе и др.). С водой жиры в присутствии эмульгаторов образуют пищевые эмульсии (кремы, маргарин, майонез).

Жиры подвергаются гидролизу при действии фермента ли­пазы или омылению под действием щелочей. В первом случае образуется смесь жирных кислот и глицерина; во втором - мы­ла (солей жирных кислот) и глицерина. Ферментативный гид­ролиз жиров может происходить и при хранении товаров. Ко­личество образующихся свободных жирных кислот характери­зуется кислотным числом.

Усвояемость жиров во многом зависит от интенсивности липаз, а также температуры плавления. Жидкие жиры с низ­кой температурой плавления усваиваются лучше, чем твердые с высокой температурой плавления. Высокая интенсивность усвоения жиров при наличии большого количества этих или других энергетических веществ (например, углеводов) приво­дит к отложению их избытка в виде жира-депо и ожирению. Поэтому при организации рационального питания должны преобладать твердые животные жиры (50-60% суточной по­требности).

Жиры, содержащие непредельные (ненасыщенные) жирные кислоты, способны к окислению с последующим образованием перекисей и гидроперекисей, которые оказывают вредное воз­действие на организм человека. Товары с прогоркшими жира­ми утрачивают безопасность и подлежат уничтожению или промпсреработке. Прогоркание жиров служит одним из крите­риев окончания срока годности или хранения жиросодержащих товаров (овсяной крупы, пшеничной муки, печенья, сыров и др.). Способность жиров к прогорканию характеризуется йод­ным и псрекисным числами.

Жидкие жиры с высоким содержанием непредельных жир­ных кислот могут вступать в реакцию гидрогенизации - на­сыщения таких кислот водородом, при этом жиры приобре­тают твердую консистенцию и выполняют функцию замени­телей некоторых твердых животных жиров. Данная реакция положена в основу производства маргарина и маргариновой продукции.

При высокой температуре жиры плавятся, кипят, а затем и разлагаются с образованием вредных веществ (при температуре более 200 °С).

Липоиды - жироподобные вещества, в состав молекул кото­рых входят остатки глицерина или других высокомолекулярных спиртов, жирных и фосфорной кислот, азотистых и других ве­ществ.

К липоидам относятся фосфатиды, стероиды и воска. От ли-пидов они отличаются наличием фосфорной кислоты, азоти­стых оснований и других веществ, отсутствующих в липидах. Это более сложные вещества, чем жиры. Большинство их объе­диняет наличие в составе жирных кислот. Второй компонент - спирт - может иметь разную химическую природу: в жирах и фосфатидах - глицерин, в стероидах - высокомолекулярные циклические спирты-стерины, в восках - высшие жирные спирты.

Наиболее близки по химической природе к жирам фосфати­ды (фосфолипиды) - сложные эфиры глицерина жирных и фосфорной кислот и азотистых оснований. В зависимости от химической природы азотистого основания выделяют следую­щие разновидности фосфатидов: лецитин (новое название - фосфатидилхолин), в составе которого содержится холин; а также кефалин, содержащий этаноламин. Наибольшее распро­странение в природных продуктах и применение в пищевой промышленности имеет лецитин. Лецитином богаты желтки яиц, субпродукты (мозги, печень, сердце), молочный жир, бо­бовые крупы, особенно соя.

Свойства. Фосфолипиды обладают эмульгирующими свой­ствами, благодаря чему лецитин используется в качестве эмуль­гатора при производстве маргарина, майонеза, шоколада, моро­женого, а также некоторых кремов.

Стероиды и воска являются сложными эфирами высокомо­лекулярных спиртов и высокомолекулярных жирных кислот (С, 6 -С 3 б)- Они отличаются от других липоидов и липидов от­сутствием в их молекулах глицерина, а друг от друга -спирта­ми: стероиды содержат остатки молекул стеринов - цикличе­ских спиртов, а воска - одноатомные спирты с 12-46 атомами С в молекуле. В зависимости от происхождения стерины под­разделяются на растительного - фитостерины; животного - зоостерины и микробиологического происхождения - микро-стерины. Основной стерин растений - р-ситостерин, живот-

ных - холестерин, микроорганизмов - эргостерин. Ситосте-рином богаты растительные масла, холестерином - коровье масло, яйцо, субпродукты. В шерсти и мехе животных в значи­тельных количествах содержится холестерин и другие зоостери­ны, в частности ланостерин.

Свойства. Стероиды нерастворимы в воде, не омыляются щелочами, имеют высокую температуру плавления, обладают эмульгирующими свойствами. Холестерин и эргостерин под воздействием ультрафиолетовых лучей могут превращаться в

витамин О.

Стерины и стероиды встречаются вместе с липидами в пи­щевых продуктах, а также в шерстяных и меховых изделиях.

Воска подразделяются на природные и синтетические, а природные - на растительные и животные. Растительные воска входят в состав покровных тканей листьев, плодов, стеблей. Некоторые растительные воска (карнаубский, пальмо­вый) используют в пищевой промышленности в качестве глази-рователей. Животные воска - пчелиный, ланолин овечь­ей шерсти, спермацет кашалотов - используются при произ­водстве косметических товаров, а пчелиный воск - в качестве глазирователя поверхности пищевых продуктов.

Синтетические воска в зависимости от типа исход­ного сырья подразделяют на частично и полностью синтетиче­ские. Их применяют при производстве политур, защитных ком­позиций, изолирующих материалов, компонентов кремов в косметике и мазей в медицине.

Таким образом, воска встречаются в небольшом количестве в пищевых продуктах растительного происхождения, а также в непродовольственных товарах: косметических (кремы, губная помада, мыло), бытовой химии (мастики для натирки полов, восковые свечи), шерстяных и меховых изделиях (шерстяной

Воска выполняют защитную функцию благодаря своим свойствам: пластичности, химической инертности. Они не смачиваются водой, водонепроницаемы, нерастворимы в воде, этаноле, но растворимы в бензине, хлороформе, диэтиловом

Гликозиды - олигомеры, в которых остаток молекул моноса-харидов или олигосахаридов связан с остатком неуглеводного вещества - аглюкона через гликозидную связь.

Полимеры с неорганической (не содержащей атомов углерода) главной цепью макромолекулы (См. Макромолекула). Боковые (обрамляющие) группы - обычно тоже неорганические; однако полимеры с органическими боковыми группами часто также относят к Н. п. (строгого деления по этому признаку нет).

Аналогично органическим полимерам Н. п. подразделяют по пространственной структуре на линейные, разветвленные, лестничные и сетчатые (двух- и трёхмерные), по составу главной цепи - на гомоцепные типа [-M-] n и гетероцепные типа [-M-M"-] n или [- М- M"- М"-] n (где М, M", М" - различные атомы). Например, полимерная сера [-S-] n - гомоцепной линейный Н. п. без боковых групп.

Многие неорганические вещества в твёрдом состоянии представляют собой единую макромолекулу, однако, для отнесения их к Н. п. необходимо наличие некоторой анизотропии пространственного строения (и, следовательно, свойств). Этим кристаллы Н. п. отличаются от полностью изотропных кристаллов обычных неорганических веществ (например, NaCI, ZnS). Большинство химических элементов не способно к образованию устойчивых гомоцепных Н. п., и лишь примерно 15 (S, Р, Se, Te, Si и др.) образуют не очень длинные (олигомерные) цепи, значительно уступающие по устойчивости гомоцепным олигомерам со связями С-С. Поэтому наиболее типичны гетероцепные Н. п., в которых чередуются электроположительные и электроотрицательные атомы, например В и N, Р и N, Si и О, образующие между собой и с атомами боковых групп полярные (частично ионные) химические связи.

Полярные связи обусловливают повышенную реакционную способность Н. п., прежде всего склонность к гидролизу. Поэтому многие Н. п. малоустойчивы на воздухе; кроме того, некоторые из них легко деполимеризуются с образованием циклических структур. На эти и др. химические свойства Н. п. можно отчасти влиять, направленно меняя боковое обрамление, от которого главным образом зависит характер межмолекулярного взаимодействия, определяющего эластичные и др. механические свойства полимера. Так, линейный эластомер Полифосфонитрилхлорид [-CI 2 PN-] n в результате гидролиза по связи Р-Сl (и последующей поликонденсации) превращается в трёхмерную структуру, не обладающую эластическими свойствами. Устойчивость к гидролизу этого эластомера можно повысить при замене атомов Cl на некоторые органические радикалы. Многие гетероцепные Н. п. отличаются высокой термостойкостью, значительно превышающей термостойкость органических и элементоорганических полимеров (например, полимерный оксонитрид фосфора n не изменяется при нагревании до 600 °С). Однако высокая термостойкость Н. п. редко сочетается с ценными механическими и электрическими свойствами. По этой причине число Н. п., нашедших практическое применение, сравнительно невелико. Однако Н. п. - важный источник получения новых термостойких материалов.

Е. М. Шусторович.

  • - соли борных к-т: метаборной НВО 2, ортоборной Н 3 ВО 3 и не выделенных в своб. состоянии полиборных Н 3m-2n В mO3m-n. По числу атомов бора в молекуле делятся на моно-, ди-, тетра-, гексабораты и т. д. Бораты называют также...

    Химическая энциклопедия

  • - соли угольной к-ты. Существуют средние карбонаты с анионом СО 32- и кислые, или гидрокарбонаты, с анионом HCO3-. К. - кристаллич...

    Химическая энциклопедия

  • - клеи на основе клеящих в-в неорг. природы. Минеральные клеи производят в виде порошков, р-ров и дисперсий...

    Химическая энциклопедия

  • - соли азотной к-ты HNO3. Известны почти для всех металлов; существуют как в виде безводных солей Mn , так и в виде кристаллогидратов Mn.x>H2O ...

    Химическая энциклопедия

  • - соли азотистой к-ты HNO2. Используют прежде всего нитриты щелочных металлов и аммония, меньше-щел.-зем. и 3d-металлов, Рb и Ag. О Н. остальных металлов имеются только отрывочные сведения...

    Химическая энциклопедия

  • - ярко-красные твердые соед. общей ф-лы Мn, где п заряд катиона М. Ион О -3 имеет симметричную треугольную конфигурацию; в молекуле RbO3 длина связи ОЧО 0,134 нм, угол ООО 114°...

    Химическая энциклопедия

  • - см. Гидроксиды, Кислоты и основания...

    Химическая энциклопедия

  • - см. Фосфаты конденсированные...

    Химическая энциклопедия

  • - соли серной к-ты. Известны средние сульфаты с анионом, кислые, или гидросульфаты, с анионом, основные, содержащие наряду с анионом группы ОН, напр. Zn22SO4...

    Химическая энциклопедия

  • - соед. серы с металлами, а также с более электроположит. неметаллами. Бинарные сульфиды могут рассматриваться как соли сероводородной к-ты H2S -средние, напр. , и кислые, или гидросульфиды, MHS, M2...

    Химическая энциклопедия

  • - соли сернистой к-ты H2SO3. Различают средние сульфиты с анионом и кислые с анионом. Средние С.-кристаллич. в-ва. С. аммония и щелочных металлов хорошо раств. в воде; р-римость: 2SO3 40,0 , K2SO3 106,7 ...

    Химическая энциклопедия

  • - ...

    Энциклопедический словарь нанотехнологий

  • - см. Органические вещества...

    Энциклопедический словарь Брокгауза и Евфрона

  • - К неорганическим относятся соединения всех химических элементов, за исключением большинства соединений углерода...

    Энциклопедия Кольера

  • - неорганические вещества с функциональными свойствами. Различают металлические, неметаллические и композиционные материалы. Примеры - сплавы, неорганические стекла, полупроводники, керамика, керметы, диэлектрики...
  • - НЕОРГАНИЧЕСКИЕ полимеры - полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов...

    Большой энциклопедический словарь

"Неорганические полимеры" в книгах

Глава 9 Полимеры вечны

Из книги Земля без людей автора Вейсман Алан

Глава 9 Полимеры вечны Портовый город Плимут в юго-западной Англии уже не входит в число живописных городов Британских островов, хотя до Второй мировой войны он им являлся. За шесть ночей в марте и апреле 1941 года бомбы нацистов разрушли 75 тысяч зданий во время того, что

Полимеры

Из книги Справочник строительных материалов, а также изделий и оборудования для строительства и ремонта квартиры автора Онищенко Владимир

Полимеры В технологии производства строительных пластмасс полимеры, получаемые синтезом из простейших веществ (мономеров), по способу производства подразделяются на два класса: класс А – полимеры, получаемые цепной полимеризацией, класс Б – полимеры, получаемые

Карбоцепные полимеры

Из книги Большая Советская Энциклопедия (КА) автора БСЭ

Гетероцепные полимеры

Из книги Большая Советская Энциклопедия (ГЕ) автора БСЭ

Полимеры

Из книги Большая Советская Энциклопедия (ПО) автора БСЭ

Кремнийорганические полимеры

Из книги Большая Советская Энциклопедия (КР) автора БСЭ

Из книги Большая Советская Энциклопедия (ИЗ) автора БСЭ

Синдиотактические полимеры

Из книги Большая Советская Энциклопедия (СИ) автора БСЭ

ПОЛИМЕРЫ

Из книги Эксперимент в хирургии автора Кованов Владимир Васильевич

ПОЛИМЕРЫ В начале нашего столетия химики синтезировали особую группу высокомолекулярных соединений и полимеров. Обладая высокой степенью химической инертности, они сразу же привлекли внимание многочисленных исследователей и хирургов. Так химия пришла на помощь

52. Полимеры, пластмассы

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

52. Полимеры, пластмассы Полимеры – это вещества, макромолекулы которых состоят из многочисленных повторяющихся элементарных звеньев, которые представляют одинаковую группу атомов. Молекулярная масса молекул составляет от 500 до 1000000.В молекулах полимеров различают

Классификация по способу получения (происхождения)

Классификация по горючести

Классификация по поведению при нагревании

Классификация полимеров по структуре макромолекул

КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

Синтез полимеров.

Полимером называют химическое вещество, имеющее большую молекулярную массу и состоящее из большого числа периодически повторяющихся фрагментов, связанных химическими связями. Указанные фрагменты называются элементарными звеньями.

Таким образом, признаки полимеров следующие: 1. очень большая молекулярная масса (десятки и сотни тысяч). 2. цепное строение молекул (чаще простые связи).

Следует отметить, что полимеры уже сегодня успешно конкурируют со всеми другими материалами, используемыми человечеством с древности.

Применение полимеров:

Полимеры биологического и медицинского назначения

Ионно - и электронно-обменные материалы

Тепло- и термостойкие пластики

Изоляторы

Строительные и конструкционные материалы

ПАВы и материалы, стойкие к агрессивной среде.

Быстрое расширение производства полимеров привело к тому, что их пожароопасность (а все они горят лучше, чем дерево) стала национальным бедствием для многих стран. При их горении и разложении образуются различные вещества, в основном токсичные для человека. Знать опасные свойства образующихся веществ необходимо для успешной борьбы с ними.

Классификация полимеров по составу основной цепи макромолекул (наиболее распространенная):

I . Карбоцепные ВМС – основные полимерные цепи построены только из углеродных атомов

II . Гетероцепные ВМС – основные полимерные цепи, помимо атомов углерода, содержат гетероатомы (кислород, азот, фосфор, серу и т.д.)

III . Элементоорганические полимерные соединения – основные цепи макромолекул содержат элементы, не входящие в состав природных органических соединений (Si, Al, Ti, B, Pb, Sb, Sn и др.)

Каждый класс подразделяется на отдельные группы в зависимости от строения цепи, наличия связей, количества и природы заместителей, боковых цепей. Гетероцепные соединения классифицируются, кроме того, с учетом природы и количества гетероатомов, а элементоорганические полимеры – в зависимости от сочетания углеводородных звеньев с атомами кремния, титана, алюминия и т.д.

а) полимеры с насыщенными цепями: полипропилен – [-CH 2 -CH-] n ,

полиэтилен – [-CH 2 -CH 2 -] n ; CH 3

б) полимеры с ненасыщенными цепями: полибутадиен – [-CH 2 -CH=CH-CH 2 -] n ;

в) галоген замещенные полимеры: тефлон – [-CF 2 -CF 2 -] n , ПВХ – [-CH 2 -CHCl-] n ;



г) полимерные спирты: поливиниловый спирт – [-CH 2 -CH-] n ;

д) полимеры производных спиртов: поливинилацетат – [-CH 2 -CH-] n ;

е) полимерные альдегиды и кетоны: полиакролеин – [-СН 2 -СН-] n ;

ж) полимеры карбоновых кислот: полиакриловая кислота – [-СН 2 -СН-] n ;

з) полимерные нитрилы: ПАН – [-СН 2 -СН-] n ;

и) полимеры ароматических углеводородов: полистирол – [-СН 2 -СН-] n .

а) простые полиэфиры: полигликоли – [-СН 2 -СН 2 -О-] n ;

б) сложные полиэфиры: полиэтиленгликольтерефталат –

[-О-СН 2 -СН 2 -О-С-С 6 Н 4 -С-] n ;

в) полимерные перекиси: полимерная перекись стирола – [-СН 2 -СН-О-О-] n ;

2. Полимеры, содержащие в основной цепи атомы азота:

а) полимерные амины: полиэтилендиамин – [-СН 2 –СН 2 –NН-] n ;

б) полимерные амиды: поликапролактам – [-NН-(СH 2) 5 -С-] n ;

3.Полимеры, содержащие в основной цепи одновременно атомы азота и кислорода – полиуретаны: [-С-NН-R-NН-С-О-R-О-] n ;

4.Полимеры, содержащие в основной цепи атомы серы:

а) простые политиоэфиры [-(СН 2) 4 – S-] n ;

б) политетрасульфиды [-(СН 2) 4 -S - S-] n ;

5.Полимеры, содержащие в основной цепи атомы фосфора,

например: O

[- P – O-CH 2 -CH 2 -O-] n ;

1.Кремнийорганические полимерные соединения

а) полисилановые соединения R R

б) полисилоксановые соединения

[-Si-O-Si-O-] n ;

в) поликарбосилановые соединения

[-Si-(-C-) n -Si-(-C-) n -] n ;

г) поликарбосилоксановые соединения

[-O-Si-O-(-C-) n -] n ;

2. Титанорганические полимерные соединения, например:

OC 4 H 9 OC 4 H 9

[-O – Ti – O – Ti-] n ;

OC 4 H 9 OC 4 H 9

3. Алюминийорганические полимерные соединения, например:

[-O – Al – O – Al-] n ;

Макромолекулы могут иметь линейную, разветвленную и пространственную трехмерную структуру.

Линейные полимеры состоят из макромолекул линейной структуры; такие макромолекулы представляют собой совокупность мономерных звеньев (-А-) , соединённых в длинные неразветвлённые цепи:

nA ® (…-A - A-…) m + (…- A - A -…) R + …., где (…- А - А -…) - макромолекулы полимера с различным молекулярным весом.

Разветвлённые полимеры характеризуются наличием основных цепях макромолекул боковых ответвлений, более коротких, чем основная цепь, но также состоящих из повторяющихся мономерных звеньев:

…- A – A – A – A – A – A – A- …

Пространственные полимеры с трёхмерной структурой характеризуются наличием цепей макромолекул, связанных между собой силами основных валентностей при помощи поперечных мостиков, образованных атомами (-В-) или группами атомов, например мономерными звеньями (-А-)

A – A – A – A – A – A – A –

A – A – A – A – A – A –

A – A – A – A – A – A -

Пространственными полимерами с частым расположением поперечных связей называют - сетчатые полимеры. Для трёхмерных полимеров понятие молекула теряет смысл, так как в них отдельные молекулы соединены между собой во всех направлениях, образуя огромные макромолекулы.

термопластичные - полимеры линейной или разветвлённой структуры, свойства которых обратимы при многократном нагревании и охлаждении;

термореактивные - некоторые линейные и разветвлённые полимеры, макромолекулы которых при нагревании в результате происходящих между ними химических взаимодействий соединяются друг с другом; при этом образуются пространственные сетчатые структуры за счёт прочных химических связей. После прогрева, термореактивные полимеры обычно становятся неплавкими и нерастворимыми – происходит процесс их необратимого отверждения.

Эта классификация весьма приближенная, так как воспламенение и горение материалов зависят не только от природы материала, но и от температуры источника зажигания, условий воспламенения, формы изделия или конструкций и т.д.

Согласно этой классификации полимерные материалы делят на горючие, трудногорючие и негорючие. Из сгораемых материалов выделяют трудновоспламеняемые, а из них и трудносгораемые - самозатухающие.

Примеры сгораемых полимеров: полиэтилен, полистирол, полиметилметакрилат, поливинилацетат, эпоксидные смолы, целлюлоза и т.д.

Примеры трудносгораемых полимеров: ПВХ, тефлон, фенолформальдегидные смолы, мочевиноформальдегидные смолы.

Природные (белки, нуклеиновые кислоты, природные смолы) (животного и

растительного происхождения);

Синтетические (полиэтилен, полипропилен и т. д.);

Искусственные (химическая модификация природных полимеров – эфиры

целлюлозы).

Неорганические: кварц, силикаты, алмаз, графит, корунд, карбин, карбид бора и т. д.

Органические: каучуки, целлюлоза, крахмал, органическое стекло и

Рассказать друзьям